
MAD 4471: Introduction to Cryptography and Coding Theory Fall 2022

Lecture 17: Modular Polynomials
Lecturer: Jean-François Biasse TA: William Youmans

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

The goal of this lecture is to describe elements of Zq[X]/(Xn + 1).

17.1 Polynomials

Polynomials over a field are a well-known example of infinite-dimensional vector spaces. They have been
studied by most calculus students in the case where the field of definition if R. In this case, we are mostly
interested in the variations of the polynomial function p : R→ R defined by

p(x) = anx
n + an−1x

n−1 + . . . + a1x + a0.

Figure 17.1: Some polynomial functions over R

In algebraic terms, polynomials are elements, and we don’t necessarily see them as functions. To properly
define them, we need to use the notion of ring. In a nutshell, a ring is an additive group that has a
multiplication. We focus our attention to rings with a multiplicative identity. The prototypical example of
a ring is (Z,+,×) where + and × are the

Definition 17.1 (Ring) A ring is a set R equipped with two binary operations: the addition + and the
multiplication × that satisfy the following properties:

1. (R,+) is a commutative group

� ∀a, b, c ∈ R, (a + b) + c = a + (b + c).
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� ∀a, b ∈ R, a + b = b + c.

� There is 0 ∈ R such that ∀a ∈ R, a + 0 = a.

� ∀a ∈ R, ∃ − a ∈ R such that a− a = 0.

2. (R,×) is a monoid

� ∀a, b, c ∈ R, (a× b)× c = a× (b× c).

� There is 1 ∈ R such that ∀a ∈ R, a× 1 = a.

3. Multiplication is distributive with respect to addition

� ∀a, b, c ∈ R, a× (b + c) = (a× b) + (a× c).

� ∀a, b, c ∈ R, (b + c)× a = (b× a) + (c× a).

Example 1 Given N > 1, one can easily verify that (Z/NZ,+,×) is a ring.

With that in mind, we can define a polynomial over a ring R.

Definition 17.2 (Polynomial) Let R be a ring. A polynomial P over R is an n-tuple of elements of
elements (a0, a1, . . . , an−1) in Rn for some n ≥ 0 where an−1 6= 0 that is denote as

P (X) = an−1X
n−1 + . . . + a1X + a0.

The set of polynomials over R is denoted R[X].

With the above notation, we implicitely assume that there will be no multivariate polynomials, or polynomials
in another variable than X. Otherwise, one needs to specify a transcendental element X over R. We do not
need any of that in this course. It turns out that R[X] is itself a ring, where the addition is straighforward,
and multiplication is the one we are used to for polynomial functions.

Definition 17.3 (Arithmetic of polynomials) Let R be a ring. Let P (X) =
∑m

i=0 aiX
i, and Q(X) =∑n

j=0 bjX
j ∈ R[X] for m,n ≥ 0. We define (P + Q)(X) =

∑maxm,n
i=0 ci and (P ×Q)(X) =

∑m+n
i=0 di where

ci, di are defined as follows

ci = ai + bi

di =
∑

k,l:k+l=i

akbl

where ai = 0 for i > m and bj = 0 for j > n.

Example 2 Over Z[X], let us define P (X) = X2 + 1 and Q(X) = X3 + X + 2. Then

P + Q = X3 + X2 + X + 3

P ×Q = X5 + 2X3 + 2X2 + X + 2

Before moving on to to the division algorithm, we end this section by a few basic definitions.

Definition 17.4 Let R be a ring.

� The degree of P (X) =
∑n

i=0 aiX
i is deg(P ) = n.

� If P (X) = 1 ·Xn + . . . + a1X + a0, we say that P is monic.
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17.2 Division by a monic polynomial

Similar to integers, one can define a polynomial division. First, given A and B in R[X], it is possible that
there is a Q in R[X] such that A = Q×B. In this case, we say that A is divisible by B. This is not the case
in general. On the other hand, if B is monic, then there is always Q,R ∈ R[X] with deg(R) < deg(B) such
that

A(X) = Q(X)B(X) + R(X).

We say that Q is the quotient and that R is the remainder of the polynomial division of A by B.

Remark 1 In the case where R is a field, we can always divide by B =
∑

i≤n biX
i by first dividing A′ =

1
bn
A by B′ = 1

bn
B which is monic, thus getting an identity of the form A′(X) = Q′(X)B′(X) + R′(X)

with deg(R′) < deg(B′) = deg(B), and then multiply both sides of the equation by bn to get A(X) =
Q′(X)B(X) + bnR

′(X).

The proof of the existence of the polynomial division by a monic polynomial essentially derives from the
description of the division algorithm itself. First, if n ≥ m, then

A = 0×B + A,

i.e. Q = B and R = B. This is the analogue of the integer division of a by b > a. Now we assume that
deg(A) = m > deg(B) = n.

We start the procedure with Q = 0 and k = m− n. Then as long as k ≥ 0, we repeat the operations:

1. A← A− ak+mXkB.

2. Q← Q + ak+mXk.

3. k ← k − 1.

At the end of the process, we set R to be A, which has degree less or equal to n.

Example 3 A = X4 + 2X + 1, and B = X2 + 1. We start with Q = 0, and k = 2.

1. For k = 2:

� A← A−X2B = −X2 + 2X + 1.

� Q← Q + X2 = X2.

2. For k = 1:

� A← A− (0X)B = −X2 + 2X + 1.

� Q← Q + 0 = X2.

3. For k = 0:

� A← A− (−1)B = +2X + 2.

� Q← Q + (−1) = X2 − 1.

At the end, Q = X2 − 1, and R = A = 2X + 2. We can check that QB +R = (X2 + 1)(X2 − 1) + 2X + 2 =
X4 − 1 + 2X + 2 = A.
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We can define congruence classes modulo a monic polynomial in R[X] in the same way as for the integers.

Definition 17.5 (Congruence relation modulo a monic polynomial) Let R be a ring and B be a
monic polynomial of R[X]. We say that A1 ∈ R[X] is congurent to A2 ∈ R[X] if

∃Q ∈ R[X] such that A1 = QB + A2.

We denote this properly by A1 ≡ A2 mod B.

The remainder of the division of A by B is denoted by A mod B, and it is the only element in the congruence
class of A modulo B that has a degree strictly less than deg(B).

Definition 17.6 Let R be a ring, and B ∈ R[X] be a monic polynomial. We denote by R[X]/B the con-
gruence classes of elements of R[X] modulo B. This space is equipped with an addition and a multiplication
of element defined as follows

[A1] + [A2] = [A1 + A2]

[A1]× [A2] = [A1 ×A2],

where [A] denotes the congruence class of A modulo B.

17.3 Circulant matrices

Our last lecture is about Module-LWE, a variant of LWE where operations happen in Zq[X]/Xn + 1 instead
of Zq. We can turn arithmetic in Zq[X]/Xn + 1 into a linear algebra operation by using circulant matrices.

The multiplication of Xi by Xj gives the monomial Xi+j . If i+ j < n, then Xi+j mod Xn + 1 = Xi+j . On
the other hand, if i + j ≥ n, then

Xi+j = Xi+j−n(Xn + 1)−Xi+j−n,

hence Xi+j mod Xn + 1 = −Xi+j−n. Next, we represent the congruence class of P ∈ Zq[X] as the column
vector in Zn

q corresponding to the coefficients of P mod Xn + 1. The map

[P ] ∈ Zq[X]/Xn + 1 7−→ [Xi]× [P ]

is linear. We can represent it as a matrix Ai ∈ Zn×n
q whose columns correspond to the image of [Xj ] for

j = 0, . . . , n− 1.

Ai =



−1 (0)
. . .

(0) −1
1 (0)

. . .

(0) 1


Example 4 Assume n = 3, and i = 1, then

A1 =

0 0 −1
1 0 0
0 1 0


We can verify 1 by 1 all multiplications of X by 1, X,X2 modulo X3 + 1:
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� X × 1 mod X3 + 1 = X, and A1

1
0
0

 =

0
1
0

.

� X ×X mod X3 + 1 = X2, and A1

0
1
0

 =

0
0
1

.

� X ×X2 mod X3 + 1 = −1, and A1

1
0
0

 =

−1
0
0

.

Multiplication by a given [A] in Zq[X]/Xn + 1 is obtained by linearity. Indeed, let a0, . . . , an−1 such that
[A] = a0[1]+a1[X]+. . . , an−1[Xn−1], then the matrix of the multiplication-by-A linear map on Zq[X]/Xn+1
is

MA = a0A0 + a1A1 + . . . + an−1An−1.

Considering the shape of the Ai, we can easily give MA with respect to the (ai)i<n:

MA =


a0 −an−1 . . . −a1
a1 a0 . . . −a2
...

...
...

an−2 an−3 . . . −an−1
an−1 an−2 . . . a0


The fact that the coefficients of [A] loop back to the lower indices is what gives these matrices their name:
circulant matrices.

Example 5 Assume n = 3 and A = X2 + 2X + 1. Then

MA =

1 −1 −2
2 1 −1
1 2 1


Assume that we want to know the image of [P ] for P = X2+1 by the multiplication-by-[A] map. The element

[P ] corresponds to x =

1
0
1

, and

MAx =

−1
1
2

 ,

which tells us that [P ×A] = [2X2 + X − 1]. We can verify this by direct calculation:

P ×A = X4 + 2X3 + 2X2 + 2X + 1.

On the other hand, (X3 + 1)(X + 2) + 2X2 +X − 1 = X4 + 2X3 + 2X2 + 2X + 1 = P ×A. This shows that
P ×A mod X3 + 1 = 2X2 + X − 1, as anticipated by the circulant matrix multiplication.


