
MAD 4471: Introduction to Cryptography and Coding Theory Fall 2022

Lecture 18: KEM based on Module-LWE
Lecturer: Jean-François Biasse TA: William Youmans

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

In this lecture, we present the Module-LWE problem, which is a generalization of the LWE problem where
elements are in Zq[X]/Xn + 1 rather than Zq. We define Key Encapsulation Mechanisms (KEM), and we
show that a KEM can be described from the Module-LWE problem. Such a strategy is the basis of the
National Institute for Standard and Technology (NIST) standard Kyber. We start be defining KEMs. Then
we describe the LWE problem, and we show how it can be attacked by searching for a short vector in a
Euclidean lattice. Finally, we show how a CPA-secure encryption scheme can be designed, and we show how
to turn this into a KEM.

18.1 Key Encaspulation Mechanism (KEM)

A KEM is a protocol that allows Alice and Bob to have a shared key to be used with a symmetric protocol.
Besides the Diffie-Hellman protocol, we do not know of many examples where the key is created in one
go. Another way to proceed is to have Alice create a symmetric key, and then transmit it to Bob. The
components of a KEM are the following:

� Key generation: outputs a pair Pk,Sk.

� Encapsulation: Encaps(Pk) = c,K a ciphertext and a key.

� Decapsulation: Decaps(c,Sk) = K a key.

To share a key with Bob, Alice creates c,K using Encaps(.) on input Bob’s public key, and sends him the
output c. Then Bob recovers K by using Decaps(.) on input c and his private key Sk. We say that the
scheme is correct if Bob retrieves Alice’s key K with overwhelming probability.

Example 1 Assume that we have a CCA-secure public key encryption scheme given by Enc,Dec. For
example, RSA with OAEP. Then we can define the following KEM:

� Encapsulation: Draw K uniformly at random in the key space K and produce c = Enc(K,Pk).

� Decapsulation: Recover K = Dec(c,Sk).

A typical notion of security for a KEM is indistinguishability under Chosen Ciphertext Attacks. In the
corresponding security game, an adversary is given the public key, a ciphertext, and a key. The goal of the
adversary is to determine whether the the ciphertext is the encapsulation of the key, or some random key
from K. Additionally, the adversary is allowed to make decapsulation queries for ciphertexts different than
the one they received from the challenger.

18-1

18-2 Lecture 18: KEM based on Module-LWE

Challenger Adversary

Pk, Sk←$ KKEM

c,K0 = Encaps(Pk),K1 ←$ K
b←$ {0, 1}

c,Kb

chooses c0, c1, . . . , cl 6= c.

c0, c1, . . . , cl

∀i ≤ l, K∗
i = Decaps(ci Sk)

K∗
0 ,K

∗
1 , . . . ,K

∗
l

Computes b∗ ∈ {0, 1}
wins if b∗ = b

Figure 18.1: Indistinguishability under Chosen Ciphertext Attacks

18.2 Module-LWE

To understand Module-LWE, we first recall the definition of LWE. Let q > 0 be a modulus, m, k > 0 be
integers1, σ be a standard deviation, and χσ be the rounded Gaussian distribution over Zq with standard
deviation σ. Given m samples of the form

ai, 〈ai, s〉+ ei,

where ai is distributed uniformly at random in Zkq and ei ← χ, find the secret s ∈ Zkq .

The Module-LWE problem is defined similarly, except that the ai are taken in (Zq[X]/Xn + 1)
k

and e is in
(Zq/Xn + 1)

m
where n is an integer (typically a power of 2). When n = 1, we fall back on the traditional

LWE problem. When k = 1, we have the so-called Ring-LWE problem. With Module-LWE, the difficulty of
the problem can be adjusted by moving n or k (and of course q). Since arithmetic can be heavily optimized,
practical Module-LWE solutions deployed typically fix q and n to make sure that arithmetic in Zq/Xn + 1
is optimized once for all, and they increase k to drive the hardness up. Typically, k takes moderate values
(k = 2, 3 for ex.).

Example 2 Let q = 11 ,n = 3, k = 2, and m = 6. Let the secret s be

s = (X + 1, X − 1),

where we identify polynomials P (X) with their residue class in Zq/Xn + 1. An example of a challenge for
the Module LWE problem is given below:

� i = 1: a1 = (X,X2), e1 = 1, 〈a1, s〉+ e1 = 1.

� i = 2: a2 = (X2, X + 1), e2 = X, 〈a2, s〉+ e2 = 2X2 +X − 2.

� i = 3: a3 = (5, 3X2 + 3), e3 = 2, 〈a3, s〉+ e3 = −3X2 − 3X + 1.

1In the Module-LWE notation, we keep n to define Zq [X]/Xn + 1

Lecture 18: KEM based on Module-LWE 18-3

� i = 4: a4 = (2X, 6X2 +X + 2), e4 = X + 1, 〈a4, s〉+ e4 = −3X2 + 4X + 4.

� i = 5: a5 = (3X2 +X, 2), e5 = X2, 〈a5, s〉+ e5 = 5X2 + 3X − 5.

� i = 6: a6 = (3X + 1, X2 − 1), e6 = X − 1, 〈a6, s〉+ e6 = 2X2 + 4X.

From a matrix perspective, the challenge is given by

A =

X X2

X2 X + 1
5 3X2 + 3

2X 6X2 +X + 2
3X2 +X 2
3X + 1 X2 − 1

 ∈
(
Z11[X]/X3 + 1

)6×2
, b = As =

1

2X2 +X − 2
−3X2 − 3X + 1
−3X2 + 4X + 4
5X2 + 3X − 5

2X2 + 4X

18.3 Solving Module-LWE with Euclidean lattices

Here, we present one of the attaks against Module-LWE that uses Euclidean lattices. In addition to attacks
using lattice methods, there is another connection between Module-LWE and the search for short vectors in
lattices that we will know describe in this course: the security reduction. In a nutshell, there is a proof that
if one solves Module-LWE, then one is capable of finding short vectors in certain Euclidean lattices. Since
the latter is assumed to be a computationally difficult problem, this proof suggests that we should treat
Module-LWE as a problem at least as hard as the search for short vectors. This security proof is outside
of the scope of this course. Instead, we show that someone with access to an algorithm that can return the
shortest non-zero vector of a Euclidean lattice can use it to mount an attack to solve Module-LWE.

We start by presenting this attack in the case of LWE (i.e. n = 1). We are given A ∈ Zm×nq , and b ∈ Zmq
with the promise that there is a rather short e ∈ Znq such that

As + e = b.

Next, we observe that since As− b = −e is a short vector. This means that the vector(
A b
0 t

)(
s
−1

)
=

(
−e
−t

)
is also small (when the chosen parameter t is small). At this point, the matrix has coefficients in Zq. We
can perform Gaussian elimination on the columns of A to obtain an invertible matrix U ∈ Zn×nq such that

AU =

(
In×n
A′

)
.

Note that if the upper n × n block of A is not invertible, Gaussian elimination will not yield the identity
block, but this is unlikely to happen for large enough q. Additionally, in Lecture 14, we only formally defined
Gaussian elimination on rows. The same process can happen with columns, where left multiplications are
replaced by right multiplications. We do not re-define this process here. However, we can also easily reduce
column Gaussian elimination to row Gaussian multiplication by finding V such that VAT = (In | A′T), and

notice that for U = V T , we have AU =

(
In×n
A′

)
.

We can use this to simplify the search for s by performing a change of basis that replaces A by

(
In×n
A′

)
:(

A b
0 t

)(
s
−1

)
=

(
A b
0 t

)(
U 0
0 1

)(
U−1 0
0 1

)
︸ ︷︷ ︸

Indentity

(
s
−1

)
=

((
In
A′

)
b

0 t

)(
s′

−1

)
, (18.1)

18-4 Lecture 18: KEM based on Module-LWE

where s′ = U−1s. Given the definition of s′, we have that

(
In
A′

)
s′ − b =

s′1 − b1

...
s′n − bn

A′s′ − (bi)i>n

 = As− b = e (modq) (18.2)

To turn the search for

(
s
−1

)
into the search for a short vector in a Euclidean lattice, we need to work with

matrices over Z. In the following, we identify A ∈ Zm×nq with the matrix of Zm×n whose entries are the
representatives of the entries of A in {d−q/2c, . . . , dq/2c} (where the rounding are such we have exactly q
consecutive elements in the range). In terms of matrices in Z, Equation (18.2) becomes

(
In
A′

)
s′ − b =

s′1 − b1

...
s′n − bn

A′s′ − (bi)i>n

 = e +

k1q
...

kmq

 = e + qImk

For some k ∈ Zm. This means that once we handle integer matrices, we are searching for both s′ and k such
that (

In
A′

)
s′ − b + qImk =

s′1 − b1

...
s′n − bn

A′s′ − (bi)i>n

+ qImk

is minimal. All vectors congruent to s′ modulo q are solution (we just need to adjust the vector k). We can
therefore assume that the one we find is the one that ensures that ∀i ≤ n, s′i − bi ∈ {d−q/2c, . . . , dq/2c}.
With this choice, we do not care about adjusting the rows of index i = 1, . . . , n by multiples of q because
s′i − bi are already reduced modulo q. We are therefore only trying to find k ∈ Zm−n that minimalizes(

In
A′

)
s′ − b +

(
0n

qIm−nk

)
In terms of lattices, we want to find the shortest non-zero vector in the Euclidean lattice defined by the
following matrix:

B =

(InA′
)

b

(
0n

qIm−n

)
0 t 0

With that choice, we have that B

 s′

−1
k

 =

(
e
−t

)
is the shortest vector of the lattice generated by the

columns of B (assuming that e was short enough).

Example 3 Let n = 4, m = 7, q = 1009 and

A =

208 598 985 275
168 34 519 353
478 86 389 53
732 928 54 991
817 906 347 259
858 442 513 936
671 805 277 984

e =

1
−1
1
2
0
1
−2

s =

99
61
424
516

 b = As + e =

112
156
675
417
204
148
118

Lecture 18: KEM based on Module-LWE 18-5

The Gaussian elimination on the column of A yield

(
I4
A′

)
=

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

419 330 647 918
587 413 102 387
756 746 507 319

Finally, the matrix B is given by

B =

(I4
A′

)
b

(
04×3
qI3

)
0 1 0

 =

1 0 0 0 112 0 0 0
0 1 0 0 156 0 0 0
0 0 1 0 675 0 0 0
0 0 0 1 417 0 0 0

419 330 647 918 204 1009 0 0
587 413 102 387 148 0 1009 0
756 746 507 319 118 0 0 1009
0 0 0 0 1 0 0 0

Lattice reduction on the lattice generated by the columns of B yields the short vector

1
−1
1
2
0
1
−2
1

=

(
e
1

)

Under the assumption that ±
(
e
1

)
are the only short vectors, we know ±e, and we can recover As from As+e,

and perform Gaussian elimination to recover s (see section “Learning Without Errors”or Lecture 14).

Solving Module-LWE from Euclidean lattices can be done in a similar way. The trick is to use circulant
matrices to turn multiplications in Zq[X]/Xn + 1 into matrix-vector multiplications. As we increase the size
of the matrices, it can be difficult to keep track of the operations. To illustrate this approach, let us take
only rows 1 and 2 of Example 2. We have that s = (X + 1, X − 1). The matrix challenge is given by

A =

(
X X2

X2 X + 1

)
←→

0 0 −1 0 −1 0
1 0 0 0 0 −1
0 1 0 1 0 0
0 −1 0 1 0 −1
0 0 −1 1 1 0
1 0 0 0 1 1

 = A′, b =

(
1

2X2 +X − 2

)
←→

1
0
0
−2
1
2

 = b′

Hence the search for s ∈
(
Zq[X]/X3 + 1

)2
and e ∈

(
Zq[X]/X3 + 1

)2
such that As + e = b boils down to

the search for s′ ∈ Z6
q and e′ ∈ Z6

q such that A′s′ + e′ + b, which can be done with the lattice technique
described above.

18-6 Lecture 18: KEM based on Module-LWE

18.4 A KEM from Module-LWE encryption

First, we describe how to do public-key encryption from Module-LWE, and then we recall how a KEM can
be desined from this encryption scheme. We use the notation R = Zq[X]/Xn + 1, and we assume that we
have probability distributions χ on R and χk on Rk (we did mention that it was better to specify them, but
this section is about showing similarities with LWE encryption).

Key generation To generate the key, one performs the following steps:

� Draw A ∈ Rk×k.

� s, e← χk

� Pk← A,As + e, Sk← e.

Encryption We wish to encrypt a message m ∈ {0, 1}n which is identified with the congruence class of
mn−1X

n−1 + . . .+m0 in R. We use Pk← A,As + e. We perform the following steps:

� r← χk, e1 ← χk, e2 ← χ.

� u← rA + e1,

� v ← r (As + e) + e2 + d q2c ·m.

The ciphertext is c = (u, v).

Decryption The ciphertext we receive is c = (u, v) with

u =
∑
i

riai + e1

v =

(∑
i

riai

)
s +

∑
i

xiei + e2 +
⌈q

2

⌋
·m.

We use the secret key s to perform the following operation:

v − us =
∑
i

xiei + e2 − e1s︸ ︷︷ ︸
e′

+
⌈q

2

⌋
·m

As long as the coefficients of e′ ∈ R = Zq[X]/Xn + 1 are less than q/4, we can recover each mi by setting it
to 0 if the coefficient i of v − us is less than q/4 and 1 otherwise.

Encapsulation Given Pk and a public hash function H, we can derive a key K and a ciphertext with the
following operations:

� Draw m ∈ {0, 1}n uniformly at random.

� K̂ ← H(Pk||m).

� c← Enc(m,Pk).

� K ← H(K̂||c).

Lecture 18: KEM based on Module-LWE 18-7

Decapsulation Given Sk, a public hash function H and c, we retrieve K:

� m← Dec(c,Pk).

� K̂ ← H(Pk||m).

� K ← H(K̂||c).

