
MAD 4471: Introduction to Cryptography and Coding Theory Fall 2022

Lecture 13: Linear Algebra Review
Lecturer: Jean-François Biasse TA: William Youmans

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

In this lecture, we recall some elementary facts on linear algebra that are necessary to understand lattices.
For a thorough introduction, we refer to the linear algebra pre-requisites of this class.

13.1 Fields

Fields are elements of abstract algebra that play a role in linear algebra. However, vector spaces are sometimes
introduced without refering to fields by restricting the scope to “real vector spaces”, i.e. vector spaces that
just involve real numbers. While this is convenient to get most of the points across, we need other kinds of
fields to introduce lattice based cryptosystems. In particular, we need “finite fields”. Therefore, we must go
through the formal definition of a field.

Definition 13.1 (Field) We say that a set K is a field if there are two binary operations +, · : K×K → K
such that

1. ∀a, b, c, a+ (b+ c) = (a+ b) + c and a · (b · c) = (a · b) · c.

2. ∀a, b, a+ b = b+ a and a · b = b · a.

3. There are 0 6= 1 ∈ F such that ∀a ∈ F , a+ 0 = a and a · 1 = a.

4. ∀a ∈ F , ∃ − a ∈ F such that a+ (−a) = 0.

5. ∀a 6= 0, ∃a−1 such that a · a−1 = 1.

6. a · (b+ c) = (a · b) + (a · c).

Example 1 (Real numbers) The most obvious example of a field is (R,+, ·) where + and · are the usual
addition and multiplication between real numbers. All the properties of a field can be immediately checked.

As mentioned above, real numbers are not enough. In particular, we need the so-called “finite fields” to
define the lattice-based cryptosystems that are instroduced in this class.

Proposition 13.2 (Prime fields) For all prime p, the field Fp = Z/pZ is a field of size p.

Proof: We know that the cardinality of Z/pZ is p. Moreover, the addition and multiplication of residue
classes satisfy properties 1, 2, 3, and 6 for neutral elements [0] and [1]. Additionally, all residue classes have
an inverse for the addition: [a] + [−a] = [0]. Finally, we know that all a coprime to p is invertible modulo p.
This means that all classes [a] 6= [0] are invertible, thus satisfying Property 5.
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Proposition 13.3 (Finite fields) For all prime powers q = pn, there exists a field Fq of cardinality q.

Proof: We will prove this statement in the lecture on modular polynomials. In a nutshell, the field Fq is
made of polynomials over Fp that are reduced modulo an irreducible polynomial of degree n.

13.2 Vector spaces

Vector spaces can have many shapes, but their behavior is modeled after that of vectors with entries in a
field K. In this type of space, the natural way to define the addition of two vectors (of the same length)
u and v is coordinate-wise. Similarly, the multiplication of a vector u by λ ∈ K is most naturally defined
as the multiplication of every entry of u by λ. Such multiplication has distributivity over the addition of
vectors.

Definition 13.4 (Vector space) A vector space V over a field K is a set equipped with binary operations
+ : V × V → V and · : K × V → V such that

1. ∀u,v,w ∈ V : u + (v + w) = (u + v) + w.

2. ∀u,v ∈ V , u + v = v + u.

3. ∃0 ∈ V such that ∀v, v + 0 = v.

4. ∀λ, µ ∈ K, and v ∈ V , λ · (µ · v) = (λµ) · v.

5. ∀v ∈ V , 1 · v = v.

6. ∀λ ∈ K, and u,v ∈ V , λ · (u + v) = λ · u + λ · v.

7. ∀λ, µ ∈ K, and v ∈ V , (λ+ µ) · v = λ · v + µ · v.

Example 2 (Vectors in Rn) As mentioned before, the prototypical example of a vector space is the vectors
of a given length n with entries in R (which we denote Rn). With this space, operations are defined as

(u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn)

λ · (v1, . . . , vn) = (λv1, . . . , λvn).

The verification of the properties making Rn a vector space is immediate.

There can be much more “exotic” vector spaces. For example the set of continuous functions R → R is a
vector space over R for the usual addition of functions (f + g)(x) = f(x) + g(x) and the intuitive scalar
multiplication (λ · f)(x) = λf(x). The most important example for us is the vector spaces made of vectors
with entries in a finite field Fq.

Example 3 (Vectors of Fnq ) Vectors of Fnq have the structure of a vector space similar to that of Rn, with
addition and salar multiplication defined as

(u1, . . . , un) + (v1, . . . , vn) = (u1 + v1, . . . , un + vn)

λ · (v1, . . . , vn) = (λv1, . . . , λvn).
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We are interested in sets of elements that generate a vector space. In general, any set of elements in V
generates its own vector space V ′ ⊆ V .

Definition 13.5 (Span of a set of elements) Let V be a K-vector space, and S = {v1,v2, . . . a set (finite
or infinite) of elements of V . We denote by Span(S) (or sometimes SpanK(S) to emphasize the field of
definition) the vector space generated by all linear combinations of elements of S:

Span(S) = {v = λ1v1 + λ2v2 + . . . | for λi ∈ K, vi ∈ V }

Example 4 Let K = R, V = R3, and S = {v1,v2,v3} for v1 = (1, 0, 0), v2 = (0, 1, 0) and v3 = (0, 0, 1).
We have that Span(S) = R3 because

∀x = (x1, x2, x3) ∈ R3, x = x1v1 + x2v2 + x3v3 ∈ Span(S).

If a K-vector space V is of the form Span(S) for a finite set S, then we say that V is finitely generated.

Definition 13.6 (Basis of a vector space) A basis of a K-vector space V is a minimal generating set S
such that V = Span(S).

Example 5 For our previous example V = R3, the generating set S = v1,v2,v3, is also a basis. Indeed, S
generates V , but no subset of S generates V . On the other hand, we can see that the set

S′ = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)}

is not a basis of V . Indeed, the element (1, 1, 0) = (1, 0, 0) + (0, 1, 0) is redundant, and can be removed.

Note that a basis can be infinite. For example, the space of polynomial functions R → R is an R-vector
space, and has a basis (fi)i≥0 where fi : x 7→ xi.

Definition 13.7 (Dimension of a vector space) The cardinality of a basis of a vector space V is called
the dimension of V . If the basis is inifinite, then V is said to have infinite dimension.

Example 6 The dimension of R3 is 3, and more generally, the dimension of Rn is n.

13.3 Matrices

Matrices over a field K are another example of a K-vector space. Matrices are objects that are ubiquitous
in mathematics. Their “bare-bone” definition is very simple though: they are two-dimensional arrays of
numbers in K.

Definition 13.8 (Matrices over K) Let K be a field, and m,n > 0 be integers. The space of n by m
matrices over K is the set of two-dimensional arrays of the form (ai,j)i≤n,j≤m where ai,j ∈ K. This space
is denoted by Kn×m.

Matrices have a typical representation of the following form:

(ai,j)i≤n,j≤m =


a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m

...
...

...
an,1 an,2 . . . an,m


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Definition 13.9 (Addition of matrices) There is a natural addition + : Kn×m×Kn×m → Kn×m defined
as

a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m

...
...

...
an,1 an,2 . . . an,m

+


b1,1 b1,2 . . . b1,m
b2,1 b2,2 . . . b2,m

...
...

...
bn,1 bn,2 . . . bn,m

 =


a1,1 + b1,1 a1,2 + b1,2 . . . a1,m + b1,m
a2,1 + b2,1 a2,2 + b2,2 . . . a2,m + b2,m

...
...

...
an,1 + bn,1 an,2 + bn,2 . . . an,m + bn,m


Proposition 13.10 The space of n by m matrices over K is a vector space over K of dimension nm.

Proof: The definition of matrix addition, together with the scalar multiplication defined by

λ ·


a1,1 a1,2 . . . a1,m
a2,1 a2,2 . . . a2,m

...
...

...
an,1 an,2 . . . an,m

 =


λa1,1 λa1,2 . . . λa1,m
λa2,1 λa2,2 . . . λa2,m

...
...

...
λan,1 λan,2 . . . λan,m


satisfy all the properties of the vector space definition. Here, we are essentially treating matrices as vectors
of Knm. Likewise, matrices Mi,j defined by ai,j = 1 and ai′,j′ = 0 for i′ 6= i or j′ 6= j form a basis of Kn×m,
thus showing that the dimension of Kn×m is nm.

The vector space structure of Kn×m does not really distinguish it from Knm. Indeed, as far as addition
and scalar multiplication go, we treat matrices as vectors of length nm. However, Kn×m can be endowed
with a multiplication operation that sets them appart from vectors of Knm. This multiplication is not
coordinate-wise. Instead, it has a very specific definition as follows:

Definition 13.11 (Matrix multiplication) Let A = (ai,j)i≤n,j≤l ∈ Kn×l and B = (bj,k)j≤l,k≤m ∈
Kl×m. We define C = A×B ∈ Kn×m by

C = (ci,j)i≤n,j≤m for ci,j =

l∑
k=1

ai,kbk,j .

The coefficient ci,j is the dot-product of the i-th row of A and the j-th column of B. As a reminder, a dot
product between two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is 〈x,y〉 =

∑
i xiyi. Note that for this

operation to be possible, the number of columns of A needs to match the number of rows of B (i.e. l). We
illustrate the computation of a coefficient of the matrix product in Figure 13.3.

Example 7 3 2 1
1 0 1
0 1 0

1 0 1
2 2 2
3 2 1

 =

10 6 8
4 2 2
2 2 2


There is a matrix which plays an important role regarding the matrix product, namely the identity matrix.

Definition 13.12 (Identity matrix) Let K be a field. The identity matrix In ∈ Kn×n is defined as

In =

1 (0)
. . .

(0) 1

 .
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a11 a12 . . . a1p

a21 a22 . . . a2p

...
...

. . .
...

an1 an2 . . . anp




A : n rows p columns

b11 b12 . . . b1q

b21 b22 . . . b2q

...
...

. . .
...

bp1 bp2 . . . bpq





B : p rows q columns

c11 c12 . . . c1q

c21 c22 . . . c2q

...
...

. . .
...

cn1 cn2 . . . cnq





a 2
1
×
b 12

a 2
2
×
b 22

a 2
p
×
b p2

+

+ . . .+

C = A×B : n rows q columns

Figure 13.1: Computation of a coefficient of the matrix product

Proposition 13.13 Let K be a field, ∀A ∈ Kn×n, A× In = In ×A = A.

The identity matrix is a neutral element for the matrix multiplication operation. However, n × n matrices
are not a group for the multiplication. Indeed, not every matrix has an inverse. However, some of them are,
which is a special case of high importance in many linear algebra problems.

Definition 13.14 (Invertible matrix) Let K be a field and A ∈ Kn×n. We say that A is invertible if
there is B ∈ Kn×n such that

AB = BA = In.

In this case, we call B the inverse of A and we denote it B = A−1.

13.4 Determinants

A determinant of a matrix in Kn×n is a scalar (i.e. an element of K). The generic formula for computing
the determinant of a matrix is quite involved, and determinants of large matrices can be difficult to compute
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by hand (unless some “tricks” can be used to simplify the calculation). The case of a 2 × 2 matrix is well
known:

det

(
a b
c d

)
= ad− cb.

To give a general definition of a determinant, we need to discuss permutations of {1, . . . , n}. A permutation
σ of {1, . . . , n} is a bijection map {1, . . . , n} → {1, . . . , n}.

Definition 13.15 (Signature of a permutation) Let σ be a permutation of {1, . . . , n}. We define the
signature sgn(σ) as

� sgn(σ) = 1 if the reordering given by σ can be achieved by successively interchanging two entries in an
even number of times.

� sgn(σ) = −1 otherwise.

Example 8 (Permutations of {1, 2, 3}) Let us consider elements of S3 (i.e. permutations of {1, 2, 3}).
We start with:

σ(1) = 1, σ(2) = 3, σ(3) = 2.

The reordering of {1, 2, 3} given by sigma is {1, 3, 2}. It is achieved by exchanging 2 and 3. So sgn(σ) = −1.
Now let us consider

σ(1) = 2, σ(2) = 3, σ(3) = 1.

The reordering of {1, 2, 3} given by sigma is {2, 3, 1}. It is achieved by first exchanging 1 and 2 (thus giving
{2, 1, 3}, and then exhanging 2 and 3. Therefore sgn(σ) = 1.

Definition 13.16 (Determinant of a matrix) Let A ∈ Kn×n be a square matrix over a field K. The
determinant of A is an element of K defined as

det(A) =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

ai,σ(i)

)
.

This complicated formula does not seem very practical. Indeed, for large n, it is difficult to evaluate it by
hand. But first, we can easily check that it is exactly the formula for 2× 2 matrices that we already know!

Example 9 (Determinant formula on 2× 2 matrices) When n = 2, we have only two permutations:
the identity defined by σ(1) = 1 and σ(2) = 2, which satisfies sgn(σ) = 1, and σ′ defined by σ′(1) = 2 and
σ′(2) = 1. Since the reordering {2, 1} is obtained by exchanging 1 and 2, we have sgn(σ′) = −1. Let

A =

(
a1,1 a1,2
a2,1 a2,2

)
The determinant of A is given by

det(A) = sgn(σ)a1,σ(1)a2,σ(2) + sgn(σ′)a1,σ′(1)a2,σ′(2)

= a1,1a2,2 − a1,2a2,1

Proposition 13.17 (Determinant of a 3× 3 matrix) Let A = (ai,j)i,j≤3 ∈ K3×3. Then the determi-
nant of A is given by

det(A) = a1,1a2,2a3,3 − a1,1a2,3a3,2 + a1,3a2,1a3,2 − a1,3a2,2a3,1 + a1,2a2,3a3,1 − a1,2a2,1a3,2.
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Proof: There are 3! = 6 permutations σ ∈ S3 defined by their reordering {σ(1), σ(2), σ(3)} of {1, 2, 3}:

� {1, 2, 3}: sgn(σ) = 1,
∏3
i=1 ai,σ(i) = a1,1a2,2a3,3.

� {1, 3, 2}: sgn(σ) = −1,
∏3
i=1 ai,σ(i) = a1,1a2,3a3,2.

� {3, 1, 2}: sgn(σ) = 1,
∏3
i=1 ai,σ(i) = a1,3a2,1a3,2.

� {3, 2, 1}: sgn(σ) = −1,
∏3
i=1 ai,σ(i) = a1,3a2,2a3,1.

� {2, 3, 1}: sgn(σ) = 1,
∏3
i=1 ai,σ(i) = a1,2a2,3a3,1.

� {2, 1, 3}: sgn(σ) = −1,
∏3
i=1 ai,σ(i) = a1,2a2,1a3,2.

Putting all the terms together in a sum according to the definition of the determinant gives us the desired
formula.

Visually, this can be represented as follows (also known as Rule of Sarrus):

a11 a12 a13

a21 a22 a23

a31 a32 a33

a11 a12 a13

a21 a22 a13

+

+

+

−

−

−

13.5 Inverting matrices

Determinants play a crucial role in matrix inversion. In this section, we recall (without proof) a few facts
leading to the matrix inversion formula.

Definition 13.18 (Cofactor) Let A = (ai,j) ∈ Kn×n be a square matrix over a field K, and i, j ≤ n. The
cofactor of ai,j in A is (−1)i+jAi,j where Ai,j is the (n− 1)× (n− 1) determinant obtained by removing the
i-th row and j-th column of A.

Example 10 Cofactor of a1,1 = 0 in A:  0 2 1
3 −1 2
4 0 1


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Proposition 13.19 (Laplace expansion) For any i ≤ n, the determinant of A ∈ Kn×n can be expressed
as a sum of cofactors:

det(A) =

n∑
j=1

(−1)i+jai,jAi,j ,

where (−1)i+jAi,j is the cofactor of ai,j.

Example 11 Let

A =

0 2 1
3 −1 2
4 0 1


Then, by choosing i = 1, we have

det(A) = 0

∣∣∣∣−1 2
0 1

∣∣∣∣− 2

∣∣∣∣3 2
4 1

∣∣∣∣+ 1

∣∣∣∣3 −1
4 0

∣∣∣∣
= 0× (−1)− 2× (−5) + 1× 4 = 14

Proposition 13.20 (Inverse of a matrix) Let A ∈ Kn×n such that det(A) 6= 0. Then A is invertible
with

A−1 =
1

det(A)
CT

where Ci,j is the cofactor of ai,j and CT denotes the transpose of C (i.e. the matrix whose entry at i, j is
Cj,i).

Example 12 Let

A =

0 2 1
3 −1 2
4 0 1

 .

We already established that det(A) = 14. Now the cofactors are

C1,1 =

∣∣∣∣−1 2
0 1

∣∣∣∣ = −1, C1,2 = −
∣∣∣∣3 2
4 1

∣∣∣∣ = 5, C1,3 =

∣∣∣∣3 −1
4 0

∣∣∣∣ = 4

C2,1 = −
∣∣∣∣2 1
0 1

∣∣∣∣ = −2, C2,2 =

∣∣∣∣0 1
4 1

∣∣∣∣ = −4, C2,3 = −
∣∣∣∣0 2
4 0

∣∣∣∣ = 8

C3,1 =

∣∣∣∣ 2 1
−1 2

∣∣∣∣ = 5, C3,2 = −
∣∣∣∣0 1
3 2

∣∣∣∣ = 3, C3,3 =

∣∣∣∣0 2
3 −1

∣∣∣∣ = −6

Hence

C =

−1 5 4
−2 −4 8
5 3 −6

 ,

and

A−1 =
1

det(A)
CT =

1

14

−1 −2 5
5 −4 3
4 8 −6


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13.6 Change of basis

A matrix can represent a change of basis from a basis B1 to a matrix B2 of the same K-vector space V .
Assume that

B1 = v1, . . . ,vn

B2 = w1, . . . ,wn,

and that there are A = (ai,j)i,j≤n and B = (bi,j)i,j≤n such that

∀j ≤ n, vj =
∑
i

ai,jwi

∀j ≤ n, wj =
∑
i

bi,jvi.

Then, first of all, A and B are inverse of each other (i.e. AB = BA = In). Additionally, assume a (column)
vector v is in the span of the vi:

v = x1v1 + . . .+ xnvn,

then the vector y = (y1, . . . , yn) such that

v = y1w1 + . . .+ ynwn

is given by y = Ax.

Example 13 Suppose that B1 = {(1, 0), (1, 1)} and B2 = {(0, 1), (1, 0)} are two basese of V = R2. Then
with the previous definitions,

A =

(
0 1
1 1

)
Assume that v is represented by the vector x = (1, 1) in B1, then in B2, it is represented by

y = Ax =

(
0 1
1 1

)(
1
1

)
=

(
1
2

)

A basis of interest is always the canonical basis.

Definition 13.21 (Canonical basis) Let V = Kn for a field K. The canonical basis of V is v1, . . . ,vn
where

vi = (0, . . . , 0, 1, 0, . . . , 0)

with the coefficient 1 is in i-th position.

13.7 Linear maps

A matrix can also represent the evaluations of a linear map f at the vectors v1, . . . ,vm of a basis of a
K-vector space V of dimension m.

Definition 13.22 (Linear maps) Let V,W be a K-vector spaces. We say that f : V →W is linear if

∀v1,v2 ∈ V and λ ∈ K, f(λv1 + v2) = λf(v1) + f(v2).
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Example 14 Let V = R2, W = R, and f defined by

f(x1, x2) = x1 + x2.

Then let v1 = (x1, x2), v2 = (y1, y2), and λ ∈ R. We have

f(λv1 + v2) = f(λx1 + y1, λx2 + y2)

= λx1 + y1 + λx2 + y2

= λ(x1 + x2) + (y1 + y2)

= λf(v1) + f(v2).

The matrix of a linear map f : V → W with respect to a basis B1 = v1, . . . ,vm of V and B2 = w1, . . . ,wn

of W is the matrix A whose j-th column satisfies

f(vj) = a1,mw1 + a2,mw2 + . . .+ an,mwn.

With that in mind, if an input v ∈ V decomposes as v =
∑
j xjvj , then the image f(w) satisfies f(v) =∑

i yiwi for
y = Ax.


