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Lecture 14: The Learning With Error (LWE) Problem
Lecturer: Jean-François Biasse TA: William Youmans

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

In this lecture, we introduce the Learning With Errors problem which is at the hear of the lattice-based
cryptosystems that we present in this course.

14.1 Intuition: learning without errors

To understand the Learning With Error (LWE) problem (and why it is computationally difficult), we start
with something easy: solving linear systems. The (easy) problem we propose to solve is parametrized by the
following values:

� A modulus q ∈ Z>0.

� A dimension n > 0.

� A number of samples m > 0.

An instance of the problem is given by a m vectors ai ∈ Znq (here we use the notation Zq = Z/qZ), and the
values

b1 = 〈s,a1〉, . . . , bm = 〈s,am〉,

for a secret vector s ∈ Znq . Can you find s?

If enough samples bi = 〈s,ai〉 are given, the answer is yes. It is simple linear algebra. Let A ∈ Zm×nq be the
matrix whose m rows are the vectors ai, then the problem is to find s ∈ Znq such that

As = b for b = (b1, . . . , bm) ∈ Zmq .

To simplify, we saw that the number m of samples is “large enough” if there is a matrix U ∈ Zm×mq such

that UA =

(
In
(0)

)
. In that case, the fact that As = b implies that

UAs =


s1

. . .

sn
(0)

 = Ub

So we can read the values s1, . . . , sn out of the first n entries of the vector Ub ∈ Zmq . The construction of U
from elementary row operations (swap two rows, multiply a row by a non-zero element, and add to one rwo
a multiple of another one) is known as the Gaussian elimination.
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Swap of rows The swap of rows of index i and j can be achieved with the following matrix multiplication:
(Ik1)

0 1
(Ik2)

1 0
(Ik3)



ai,1 ai,2 . . . ai,n

aj,1 aj,2 . . . aj,n

 =


aj,1 aj,2 . . . aj,n

ai,1 ai,2 . . . ai,n

 ,

where (Ik) denotes the k by k identity matrix. Note that the swap of two rows is always invertible (i.e. the
matrix U defined above is always invertible).

Multiplication by λ The multiplication of the rown of index i by λ ∈ Zq can be achieved with the
following matrix multiplication:

1
. . .

1
λ

1
. . .

1




a1 a2 . . . an


=


λv1 λv2 . . . λvn


,

where the λ factor in the U matrix is in the i-th row (the one we want to multiply by λ). Note that the
multiplication by λ that is invertible (i.e. a class [a] ∈ Zq such that gcd(a, q) = 1) is always an invertible
operation (i.e. the matrix U is invertible).

Adding a multiple of row to another one The replacement of row of index i by its addition by λ times
the row of index j can be achieved with the following matrix multiplication:

(Ik1)
1 λ

(Ik2)
0 1

(Ik3)



ai,1 ai,2 . . . ai,n

aj,1 aj,2 . . . aj,n

 =


ai,1 + λaj,1 ai,2 + λaj,2 . . . ai,n + λaj,n

aj,1 aj,2 . . . aj,n

 .

Note that this operation is always invertible (even when λ is not invertible in Zq).

The Gaussian elimination process During the actual process of Gaussian elimination, we do not com-
pute the matrice U defined above. It is clear however that if we had the sequence U1, . . . , Uk of matrices
corresponding to each of the elementary operations applied to A, then the matrix performing them all in one
go would be U = UkUk−1 . . . U1. But we are interested in Ub, not by U itself. Therefore, during the Gaussian

elimination, we perform elementary operations of the kinds described above, leading to =

(
In
(0)

)
. At each

step of the way, we perform similar operations on b, which ultimately leads to Ub. The next question is:
in what order can be perform these operations to guarantee the result? At the beginning, we set the pivot
index to k = n. Then for each k from n to 1, we perform the following treatment:

1. Identify an index i ≤ k such that ai,k is invertible.

2. Multiply row of index i by λ such that λ · ai,k = 1.
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3. Swap row k and row i.

4. For all j 6= i, replace row j by Rj − aj,kRk (where Rj denotes row j).

Sometimes, we perform these operations on the augmented matrix which is (A|b). Below, we just keep track
separately of UA and Ub where U is the matrix that encodes all elementary operations up to the current
step.

Example 1 Let us illustrate this procedure for q = 3, b =

1
1
0

 and A =

2 2 0
0 1 1
0 2 0

. The first step is the

swap between rows 2 and 3:

UA =

2 2 0
0 2 0
0 1 1

 Ub =

1
0
1

 .

Now we multiply Row 2 by the inverse of 2 (which is 2), thus getting

UA =

2 2 0
0 1 0
0 1 1

 Ub =

1
0
1

 .

Next, we perform the following operations: R1 ← R1 − 2R2 and R3 ← R3 −R1. This yields

UA =

2 0 0
0 1 0
0 0 1

 Ub =

−2
0
1

 =

1
0
1

 .

The last operation is the multiplication of the first row by the inverse of 2 (which is 2), which finally gives us

UA =

1 0 0
0 1 0
0 0 1

 Ub =

2
0
1

 .

This means that s =

2
0
1

 is the solution to our problem. One can indeed verify that As = b.

So if solving As = b is easy when m ≥ n, then what could constitute a hard problem? Reducing the
number of available samples m would only create more possible solutions s without making the retrieval of
one of them any harder (still with Gaussian elimination). Instead, the right tweak consists in only revealing
approximations bi ≈ 〈ai, s〉 instead of their exact values. Hence the instance of the problem is given by the
m vectors ai, and bi = 〈ai, s〉+ ei where ei is a random value in Zq.

14.2 The rounded Gaussian distribution

In our progression towards the formal definition of the LWE problem, we need to specify the probability
distribution of the error terms ei defined above. Depending on the sources, the LWE problem may be
defined with the ei belonging to “some probability distribution”, or this probability distribution may be
explicitely defined. In the original work of Regev, the LWE problem is defined for the rounded Gaussian
distribution. Not specifying the probability distribution might imply that we use the uniform distribution
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over Zq given by Pr(ei = x) = 1
q . However, it would also leave the door open to the choice of a very

bad probability distribution such as for example Pr(ei = 0) = 1, which would mean reverting back to the
case of no error. Hence, it is better to specify a distribution. With certain distributions, reductions exist
between the resolution of certain hard computational problems in lattices to the resolution of LWE. For other
distributions, it is only conjectured that LWE is hard. In the following, we present the original probability
distribution that was considered to instantiate the LWE problem.

To get to the rounded Gaussian distribution, we need to mention continuous probability distributions. This
is clearly a detour because in the end, we are only trying to describe a probability distribution over the finite
set Zq.

Definition 14.1 (Density function) A function f : R → R≥0 such that
∫
R f(x)dx = 1 is called a proba-

bility density function. A random variable X is distributed according to f if

Pr(X ≥ x) =

∫ +∞

x

f(x)dx.

The particular density function we are interested in is the Gaussian density function. It is a family of
functions defined from x 7→ e−x

2

. We need the following result to propaerly introduce them:

Proposition 14.2 (Gaussian integral) The function x 7→ e−x
2

can be integrated over R, and its definite
integral satisfies ∫

R
e−x

2

dx =
√
π.

Proof: We use the fact that(∫
R
e−x

2

dx

)2

=

∫
R
e−x

2

dx

∫
R
e−y

2

dy =

∫ ∫
R2

e−(x
2+y2)dxdy.

Then we switch to polar coordinates. Integrating in R2 for x, y is the same as integrating for (r, θ) ∈
R+ × [0, 2π]: ∫ ∫

R2

e−(x
2+y2)dxdy =

∫ 2π

0

∫ ∞
0

e−r
2

rdrdθ = 2π

∫ ∞
0

e−r
2

rdr = 2π

∫ 0

−∞

1

2
esds

= π

∫ 0

−∞
esds = π(e0 − e−∞) = π.

Definition 14.3 (Gaussian density function) The Gaussian density function parametrized by µ, σ is
given by

gµ,σ : x 7→ 1

σ
√

2π
e

−(x−µ)2

2σ2 .

Proposition 14.4 The function gµ,σ describes the probability density function of a random variable with
expected value µ and variance σ2, i.e.

�

∫
R gµ,σ(x)dx = 1.

�

∫
R xgµ,σ(x)dx = µ.
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Figure 14.1: Gaussian density function

�

∫
R(x− µ)2gµ,σ(x)dx = σ2.

To go from a continuous probability distribution over R to a discrete one over Z, we can simply round. Let
XZ be the random variable with values in Z obtained by rounding X distributed according to gµ,σ to the
nearest integer. Then we have:

Pr(XZ = N) = Pr(X ∈ (N − 1

2
, N +

1

2
]) =

∫ N+ 1
2

N− 1
2

gµ,σ(x)dx.

We are only interested in the case µ = 0 (i.e. the Gaussian is centered around 0). This means that the
most likely value of the ei is 0. Now we are not done yet. The above gives a probability distribution over Z,
but our values are over Zq. Let XZq be the random variable obtained by taking the congruence class of XZ
modulo q. We have

Pr(XZq = [a]) = Pr(XZ = a+ kq for some k ∈ Z) =
∑
k∈Z

Pr(XZ = a+ kq) =
∑
k∈Z

∫ a+kq+ 1
2

a+kq− 1
2

g0,σ(x)dx.

To “simplify” things, we might want to one integral from a − 1/2 to a + 1/2. For each k, we can perform
the following change of variable u = x− kq:∫ a+kq+ 1

2

a+kq− 1
2

1

σ
√

2π
e

−x2

2σ2 dx =

∫ a+ 1
2

a− 1
2

1

σ
√

2π
e

−(u+kq)2

2σ2 du.

This immediately leads to the following description of the rounded Gaussian distribution:

Proposition 14.5 Let X be the continuous random variable with density probability g0,σ, and XZ be the
rounding of X to the nearest integer. The probability distribution of XZq which is the congruence class of
XZ is given by

Pr(XZq = [a]) =

∫ a+1/2

a−1/2
fσ,q(x)dx,

where fσ,q : x 7→
∑
k∈Z

1
σ
√
2π
e

−(x+kq)2

2σ2 .
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There is unfortunately no indefinite integral for the Gaussian function. This means that the terms that
are the integral of a Gaussian between a − 1/2 and a + 1/2 need to be estimated by numerical methods.
Nevertheless, the above gives us a way to compute the probability that XZq = [a] for all congruence classes
[a] ∈ Zq.

14.3 The definition of LWE

We call χσ the rounded gaussian distribution over Zq. When we write ei ← χσ, this means that “ei is drawn
according to the distribution χσ. Otherwise stated, we draw ei in Zq such that

Pr(ei = [x]) =

∫ x+1/2

x−1/2
fσ,q(x)dx.

We also draw the vectors ai at random, but with the uniform distribution.

Definition 14.6 (The LWE problem) Let q > 0 be a modulus, m,n > 0 be integers, σ be a standard
deviation, and χσ be the rounded Gaussian distribution over Zq with standard deviation σ. Given m samples
of the form

ai, 〈ai, s〉+ ei,

where ai is distributed uniformly at random in Znq and ei ← χ, find the secret s ∈ Znq .

Figure 14.2: Error distribution for q = 113 and σ = 0.05 (Source: Regev 05)
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Example 2 (Regev 05)

14s1 + 15s2 + 5s3 + 2s4 ≈ 8 mod 17

13s1 + 14s2 + 14s3 + 6s4 ≈ 16 mod 17

6s1 + 10s2 + 13s3 + 1s4 ≈ 3 mod 17

10s1 + 4s2 + 12s3 + 16s4 ≈ 12 mod 17

9s1 + 5s2 + 9s3 + 6s4 ≈ 9 mod 17

3s1 + 6s2 + 4s3 + 5s4 ≈ 16 mod 17

...

6s1 + 7s2 + 16s3 + 2s4 ≈ 3 mod 17

In this case s = (0, 13, 9, 11).

14.4 A secret key encryption scheme

The standard for secret key encryption is the AES. We present this LWE secret key encryption only as a
stepping stone to the full-fledged LWE public key encryption scheme.

Parameters The public parameters of the scheme are n > 0, q > 0, and the error distribution χσ. We
require σ to be small enough with respect to q to ensure that Pr(|ei| ≤ q/4) is high. The secret key is a
vector s ∈ Znq .

Encryption We assume that we want to encrypt a message µ ∈ {0, 1} (i.e. a single bit). Longer messages
have to be broken down into bits that are encrypted one by one. The steps to encryption are the following:

1. Draw a ∈ Znq uniformly at random.

2. Draw e← χσ.

3. Return c = (a, 〈a, s〉+ e+ µ · dq/2c, where dxc is the rounding of x ∈ R to the nearest integer.

Decryption Assume we received c = (a, b). With the knowledge of s, we can perform the operation
b− 〈a, s〉 = e+ µ · dq/2c. Since we requested that |e| ≤ q/4 with high probability, we know that

� If µ = 0, e+ µ · dq/2e is smaller than q/4 with high probability.

� If µ = 1, e+ µ · dq/2e is greater than q/4 with high probability.

Example 3 For q = 5, and n = 3. Assume s = (1, 0, 1), and the message is µ = 0.

� Encryption: we draw a = (2, 4, 1) and e = 1. The ciphertext is

(a, 〈a, s〉+ e+ µ · dq/2c = ((2, 4, 1), 2× 1 + 4× 0 + 1× 1 + 1 + 0× 2 mod 5) = ((2, 4, 1), 4)

� Decryption: We receive c = ((2, 4, 1), 4). We compute 〈a, s〉 = 3, then compute |3− 4| = 1, which is
less than dq/2c = 2. Hence we conclude that µ = 0.
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14.5 Towards public key encryption from LWE

To turn the previous scheme into a public key encryption scheme, we need to use the linearity of the
ciphertexts: assume that c1 = (a1, 〈a1, s〉+ e1) and c2 = (a2, 〈a2, s〉+ e2) are two encryptions of µ = 0, then

c1 + c2 = (a1 + a2, 〈a1, s〉+ 〈a2, s〉+ e1 + e2) = (a1 + a2︸ ︷︷ ︸
a

, 〈a1 + a2︸ ︷︷ ︸
a

, s〉+ e1 + e2︸ ︷︷ ︸
e

).

If e still satisfies that |e| ≤ q/4 with high probability, then the decryption procedure of the secret key scheme
will be correct with high probability. To turn an encryption of µ = 0 into an encryption of 1, one simply
add dq/2c to the second coordinate.

We can therefore produce m encryptions of 0 by sampling vectors ai ∈ Znq uniformly at random and error
terms ei〈χσ. Each sum of these encryption of 0 is another encryption of 0. Let A be the matrix whose rows
are the ai, let bi = 〈ai, s〉+ ei, and x ∈ {0, 1}m be the vector having a 1 in coordinate i if we want the i-th
encryption of 0 to occur in the sum, then we can produce an encryption of 0 in the following way:

(x ·A, 〈x,b〉) = (a, 〈a, s〉+ 〈x, e〉︸ ︷︷ ︸
e

).

If |e| ≤ q/4, then the decryption procedure succeeds. Hence we require that σ be small enough that each ei
satisfies |ei| ≤ q/4m with high probability. By triangle inequality, this guarantees that the sum of up to m
terms ei has absolute value less than q/4. With this encryption procedure, the public key is A,b, and the
private decryption key is s as in the symmetric key scheme.


