
Isogeny-based Cryptography School Summer 2021

Lecture 7: Applications of class group computations
Lecturer: Jean-François Biasse TA: R. Erukulangara and W. Youmans

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

7.1 Ideal decomposition in Cl(−d)

One of the direct applications of the class group computation that impact isogeny computations the most
is the decomposition of the class of an ideal with respect to a generating set for Cl(−d). Here we assume
that computations happen in the class group of an imaginary quadratic order. Following our description of
the Hafner and McCurley technique for computing Cl(−d), we represent ideal classes by reduced quadratic
forms of discriminant −d. In particular, at the end of the class group computation algorithm, we have a
generating set of size n1+o(1) of the lattice Λ ⊆ Zn of vectors ~x such that

fx1
1 · · · fxn

n = 1Cl(−d),

where B = (fi)i≤n is the set of prime form corresponding to the split primes p ≤ L(d)1/
√
8. We have that

n = L(d)1/
√
8+o(1). On a technicality, we did not need a basis of Λ to compute Cl(−d). However, to perform

ideal decomposition and solve related problems (such as the Discrete Logarithm Problem), we need a proper
basis. This is obtained easily in time n3+o(1) by using the same modular Gaussian elimination strategy
(Hermite Normal Form) presented by Hafner and McCurley in [3, Sec. 4]. The run time is guaranteed by
the fact that we work modulo h = |Cl(−d)| whose bit size is polynomial in log d. We can now assume that
we have a matrix M ∈ Zn×n such that

� For all i ≤ n,
∏

j≤n f
mi,j

j = 1Cl(−d).

� M is lower triangular.

� For each j > i, mi,i > mi,j (diagonal terms are dominant).

� M =

(
H (0)
∗ I

)
for H ∈ Zn0×n0 where n0 = log2+o(1) d (small essential part).

The last point is due to the fact that (under the GRH), the prime forms corresponding to ideals of norm
up to 12 log2 d generate Cl(−d). This means that the rows of index i > n0 represent a relation of the form

fi =
∏

j≤n0
f
−mi,j mod h
j , i.e. they show the decomposition of fi with respect to the generators f1, . . . , fn0

of Cl(−d).

Now given an input reduced form f , we can decompose f according to f1, . . . , fn0
by following the two-step

process:

1. Find ~x ∈ Zn such that f =
∏

i f
xi
i by the methods of Section 6.2.

2. For each i > n0, perform the reduction ~x← ~x− xi ~mi mod h where ~mi is the i-th row of M .

7-1

7-2 Lecture 7: Applications of class group computations

Step 1 runs in time L(d)1/
√
2+o(1). Step 2 uses the matrix M to re-write each component fi, i > n0 of the

decomposition of f with respect to the small generating set f1, . . . , fn0
. Note that since ~x has polynomial

`1-norm, the cost of this step is polynomial. In the end, we obtain the desired decomposition. Note that the
entries of ~x ∈ Zn0 we created are potentially as large as h which is of the order of

√
d. This is not good for

isogeny evaluation, because to evaluate the action of f on the isogeny class of an elliptic curve, one has to
pay a price proportional to the `1-norm of the vector of exponent, in this case

√
d, which is inefficient.

However, we know from the expander graph properties of the Cayley graph that a decomposition vector
with length at most log d should exist. We just need to find it. We can view Λ as a sublattice of Zn0 by
restricting ourselves to the lattice generated by the rows of H. In terms of lattice problems, we are looking
for ~y ∈ Λ such that ‖~x− ~y‖ is small. In this case, the small vector ~z = ~x− ~y satisfies∏

i

fzii =
∏
i

fxi
i ·

∏
i

f−vii︸ ︷︷ ︸
=1Cl(−d)

=
∏
i

fxi
i .

Therefore we are facing an instance of the bounded distance decoding problem. One way to solve it is to find
a reduced basis for Λ and then to use a round-off technique. More elaborate methods exist, but what they
all have in common is that it is asymptotically computationally difficult to solve BDD when the dimension
increases. Here n0 = log2+o(1) d is already a fairly high dimension to obtain asymptotically good results. If
we resort to aggressive unproven heuristics such as in [1], then we can prove a better run time. As long as
the dimension remains moderate, practical implementations relying on LLL or BKZ can produce interesting
results (see [1] for a detailed treatment).

7.2 Computations in non-maximal orders

The complexity of the Hafner-McCurley approach for computing Cl(−d) and solving related problems such as

ideal decomposition is in L(d)3/
√
8+o(1) where −d is the discriminant of the order we work in. However, this

can become rapidly inefficient as the conductor grows, even when the fundamental discriminant corresponding
to the maximal order is small. Typically, computations done in the class group of the non-maximal order
Z[
√
d] can be required in the context of isogeny computation. In particular, when it comes to computing

endomorphism rings via the Bisson-Sutherland method [2].

There is however a way to compute class groups in suborders and to solve related problems relevant to
isogeny evaluation such as ideal class decomposition by reducing the problem to computations in the class
group of the maximal order. Let −dK be the fundamental discriminant corresponding to the maximal order
of the quadratic field K, and let −d = −f2dK be the discriminant of a suborder O of the maximal order
OK . Then Pauli and Klueners proved that

1→ O∗ → OK
∗ →

⊕
p|f

OKp
∗ /O∗p → Cl(−d)→ Cl(−dK)→ 1, (7.1)

where Op denotes the localization of O at p. What this means is that Cl(−dK) is a quotient of Cl(−d) by the
image of

⊕
p|f OKp

∗ /O∗p. We can retrieve a complete generating set for the relations between generators of

Cl(−d) by using the relations between generators of Cl(−dK) (which we obtain from class group computation
in the maximal order) and their relationship with the images of generators of

⊕
p|f OKp

∗ /O∗p. We summarize
this procedure in Algorithm 1

Let’s explain Algorithm 1 a little more. It starts from the observation that the generators of Cl(−d) are that
of Cl(−dK), and those of

⊕
p|f OKp

∗ /O∗p since Cl(−d)→ Cl(−dK) is surjective, and its kernel is the image

of
⊕

p|f OKp
∗ /O∗p. This means that Cl(−d) is generated by g1, · · · , gk, g1, · · · , gl, and we now need to find

Lecture 7: Applications of class group computations 7-3

Algorithm 1 Computing Cl(O) from Cl(OK) (high level description)

Require: Order O ⊆ OK of conductor f , generators and relations for Cl(OK).
Ensure: Generators and relations for Cl(O).
1: Compute generators (gi)i≤k and a relation matrix M1 ∈ Zk×k for

⊕
p|f OKp

∗ /O∗p.

2: Let (gi)i≤l be generators of Cl(OK) and di, αi such that gdi
i = (αi)OK . M2 ← diag(di).

3: For each αi, find ~vi such that αi = (gj)
~vi
j≤k where αi is the image of αi in

⊕
p|f OK

∗
p/O∗p.

4: M3 ← (−~vi)i≤l. M ←
(

M1 (0)
M3 M2

)
.

5: Let G1, · · · , Gk ← g1, · · · , gk. Gk+1, · · · , Gk+l ← g1, · · · , gl.
6: return (Gi)i≤k+l, M .

relations between them. Moreover, according to the exact sequence of (7.1), the image of
⊕

p|f OKp
∗ /O∗p is

the kernel of Cl(−d)→ Cl(−dK). This means that products
∏

i g
x
i are mapped to (classes of) principal ideals

of the form
∏

j g
yj

j . The only way to form a relation involving the (gi)i≤k and the (gj)j≤l is therefore to have

a relation of the form
∏

j g
yj

j = (α) (from Cl(−dK)), and to decompose the class α of α in
⊕

p|f OKp
∗ /O∗p

with respect to g1, . . . , gk thus giving that
∏

i g
xi
i =

∏
j g

yj

j (the equality being considered in Cl(−d)). This
means that ~x − ~y is a relation between generators of Cl(−d). The submatrix (M1 | (0)) corresponds to the
choice of ~y = ~0 (in which case we just take relations between the (gi)i≤k). The rows of (M3 |M2) correspond
to choices of ~y that span the lattice of relations between the gi, i.e. such that

∏
j g

yj

j = (α) for some α.

Altogether, the rows of
(

M1 (0)
M3 M2

)
span the lattice of relations between the generators of Cl(−d).

Now we move to the estimation of the cost of this procedure. To compute g1, . . . , gk, one needs to compute
Cl(−dK). As we’ve seen in Section 7.1, this comes with a relation matrix H ∈ Zn0×n0 between the prime

forms of norm less than log2+o(1) d. Then a polynomial time procedure can yield unimodular matrices U, V
such that UHV = diag(di). Then the coefficients of V −1 give us the generators of the gj according to the
following procedure.

Lemma 7.1 Let U, V such that UHV = diag(di) where H ∈ Zn0×n0 is a basis of the lattice of relations

between the prime forms of norm less than log2+o(1) d. Then each generator gk of order dk is obtained by
using the coefficients of the k-th row of V −1:

gk = f
v−1
k,1

1 f
v−1
k,2

2 . . . f
v−1
k,n0

n0 .

Proof: We start by proving that HV is a relation matrix for the gk we just defined, that is to say, we
want to show that each row of HV is a relation. We denote by HVi,k the coefficient i, k of HV . From the
definition of the gk, we have that the coefficients of the i-th row of HV satisfy∏

k

g
HVi,k

k =
∏
k

∏
j

p
HVi,kV

−1
k,j

j =
∏
j

p
∑

k HVi,kV
−1
k,j

j

=
∏
j

p
(HV V −1)i,j
j =

∏
j

p
Hi,j

j = 1Cl(OK)

The last equality simply derives from the fact that the row i of H is a relation for the pj . Now since U is
unimodular, the rows of UHV = diag(di) generate the same lattice of relations as the rows of HV .

Finally, there cannot be more relations between the (gk)k≤n0 because the transformation between the pj and
the gk is invertible. Therefore 〈([pj])j≤n0〉 = 〈([gk])k≤n0〉, and in particular, we know that the determinant
of the lattice of relations between the pj is the same as the determinant of the lattice of relations between

7-4 Lecture 7: Applications of class group computations

the gk (i.e. the class number). Therefore, the gk must be the generators of the cycles of order dk in the
decomposition Cl(−dk) =

⊕
i Z/diZ.

We can drop the gj where dj = 1 from the list as they are trivial and therefore keep only k ≤ n0 of them.
The creation of

⊕
p|f OKp

∗ /O∗p requires the factorization of the conductor f . Finally, for each ~vi in Step 3

comes at the cost of solving discrete logarithms with respect to the generators of (OK/p)∗ for each of the
polynomially many divisors p of f .

Proposition 7.2 The cost of Algorithm 1 is given by

Cost(Class Group of Cl(−dK)) + Cost(Factorization of f) + Cost(DLP in (OK/p)∗).

A similar procedure giving the decomposition of a given class of ideal with respect to the generators of
Cl(−d) can be derived from the work of Klueners and Pauli as well.

Algorithm 2 Finding the class of a ⊆ O in Cl(O)

Require: Ideal a in O ⊆ OK of conductor f , generators (Gi)i≤k+l and relations M for Cl(O). Generators
(gj)j≤l for Cl(OK).

Ensure: Vector ~v ∈ Zl+k such that (Gi)
~v
i≤k+l is the class of a.

1: Decompose a in Cl(OK). Find α, (xi)i≤k such that a = (α)
∏

i g
xi
i .

2: Decompose α in
⊕

p|f OK
∗
p/O∗p. Find (yj)j≤l such that α =

∏
j g

yj

j .

3: Let ~v = (x1, · · · , xk, y1, · · · , yl).
4: return ~v.

References

[1] J.-F. Biasse, C. Fieker, and M. Jacobson. Fast heuristic algorithms for computing relations in the class
group of a quadratic order, with applications to isogeny evaluation. LMS Journal of Computation and
Mathematics, 19(A):371–390, 2016.

[2] G. Bisson and A. Sutherland. Computing the endomorphism ring of an ordinary elliptic curve over a
finite field. Journal of Number Theory, 131(5):815 – 831, 2011. Elliptic Curve Cryptography.

[3] J.L. Hafner and K.S. McCurley. A rigorous subexponential algorithm for computation of class groups.
J. Amer. Math. Soc., 2:837–850, 1989.

