Lecture 4: Imaginary Quadratic Fields

Lecturer: Jean-François Biasse
TA: R. Erukulangara and W. Youmans

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 Quadratic number fields

An integer Δ is a quadratic discriminant if it is not a perfect integral square and $\Delta \equiv 0,1 \bmod 4$. The quadratic order of discriminant Δ is defined as the \mathbb{Z}-module

$$
\mathcal{O}_{\Delta}=\left[\mathbb{Z}+\frac{\Delta+\sqrt{\Delta}}{2} \mathbb{Z}\right]
$$

If $\Delta<0$, we call \mathcal{O}_{Δ} an imaginary quadratic order and if $\Delta>0$ we call it as real quadratic order. A quadratic order \mathcal{O}_{Δ} is called a maximal order if it is not contained in a larger quadratic order. The discriminant of a maximal order is called fundamental discriminant. Let Δ be a fundamental discriminant. Then, the quadratic field of discriminant Δ is defined as the \mathbb{Q}-module $\mathbb{Q}(\sqrt{\Delta})=[\mathbb{Q}+\sqrt{\Delta} \mathbb{Q}]$.

It can be shown $[1,2]$ that every integral ideal \mathfrak{a} of \mathcal{O}_{Δ} can be uniquely represented by

$$
\mathfrak{a}=m\left[a \mathbb{Z}+\frac{b+\sqrt{\Delta}}{2} \mathbb{Z}\right],
$$

where $a, b, m \in \mathbb{Z}, a, m>0, b^{2} \equiv \Delta \bmod 4 a, \operatorname{gcd}\left(a, b,\left(b^{2}-\Delta\right) / 4 a\right)=1$, and b is uniquely determined modulo $2 a$. The fractional ideals are the subsets \mathfrak{a} of $\mathbb{Q}(\sqrt{\Delta})$ such that there exists d where $d \mathfrak{a}$ is an integral ideal of \mathcal{O}_{Δ}. They can be uniquely represented by

$$
\mathfrak{a}=q\left[a \mathbb{Z}+\frac{b+\sqrt{\Delta}^{\mathbb{Z}}}{2}\right]
$$

where $q=\frac{m}{d(\mathfrak{a})}$ and $d(\mathfrak{a})$ is the minimal denominator of \mathfrak{a} defined by m, a, b, that is to say the minimal positive d such that $d \mathfrak{a}$ is integral. In addition, a, b, m satisfy the same properties as for the integral ideals. This representation allows us to compute the inverse of a fractional ideal of \mathcal{O}_{Δ}. Let \mathfrak{a} be a fractional ideal represented by (q, a, b), then its inverse is given by

$$
\mathfrak{a}^{-1}=\frac{q}{\mathrm{~N}(\mathfrak{a})}\left[a \mathbb{Z}+\frac{-b+\sqrt{\Delta}}{2} \mathbb{Z}\right]
$$

The expression of the norm of an ideal can also be made explicit.

Proposition 4.1 Let \mathfrak{a} be a fractional ideal represented by $(m / d, a, b)$, then its norm is given by

$$
\mathrm{N}(\mathfrak{a})=a m^{2} / d^{2}
$$

To compute the group structure of Cl_{Δ}, we will use a sieving algorithm that requires the enumeration of non inert primes of norm lower than a certain bound. To this end, we need to find a way to decide whether a prime is inert, ramified or split, which can be done by using Kummer's theorem.

Proposition 4.2 Let p be a prime and let $\left(\frac{\Delta}{\bar{p}}\right)$ be the Kronecker symbol of Δ and p. We know from Kummer's theorem that:

- p splits completely, that is $p \mathcal{O}_{\Delta}=\mathfrak{p}_{1} \mathfrak{p}_{2}$, if $\left(\frac{\Delta}{\bar{p}}\right)=1$.
- p is inert, that is $p \mathcal{O}_{\Delta}=\mathfrak{p}_{1}$, if $\left(\frac{\Delta}{\bar{p}}\right)=-1$.
- p is ramified, that is $p \mathcal{O}_{\Delta}=\mathfrak{p}_{1}^{2}$, if $\left(\frac{\Delta}{\bar{p}}\right)=0$.

These considerations allow us to compute the norm of a given prime ideal $\mathfrak{p} \mid p$. Indeed, if it splits completely or if it is ramified, then $\mathrm{N}(\mathfrak{p})=p$ whereas if p is inert then $\mathrm{N}(\mathfrak{p})=p^{2}$.

The group of units in quadratic extensions is much simpler than in the general case. Recall that in the imaginary case $r_{1}=0$ and $r_{2}=1$ whereas in the real case $r_{1}=2$ and $r_{2}=0$. In the imaginary case, there is no torsion-free subgroup of \mathcal{O}_{Δ}^{*}. The units are simply the roots of unity in \mathcal{O}_{Δ}, that is to say

- ± 1 if $\Delta<-4$
- $\pm 1, \pm i$ if $\Delta=-4$
- $\pm 1, \pm i, \frac{1 \pm \sqrt{-3}}{2}$ if $\Delta=-3$.

On the other hand, there is a one dimensional torsion-free subgroup of \mathcal{O}_{Δ}^{*} in the real case. The group of units has the form

$$
\mathcal{O}_{\Delta}^{*} \simeq\langle-1\rangle \times\left\langle\varepsilon_{\Delta}\right\rangle
$$

for some ε_{Δ} called a fundamental unit of \mathcal{O}_{Δ}. As $r=1$, the regulator of \mathcal{O}_{Δ} has the simple form

$$
R_{\Delta}=\log \left|\varepsilon_{\Delta}\right|
$$

Let us now define the notions of normal ideal and reduced ideal in the context of quadratic number fields.

Definition 4.3 Let \mathfrak{a} be a fractional ideal of \mathcal{O}_{Δ} represented by (q, a, b), then \mathfrak{a} is normal if

- $-a<b \leq a$ if $(\Delta<0)$ or $(\Delta>0$ and $a \geq \sqrt{\Delta})$
- $\sqrt{\Delta}-2 a<b \leq \sqrt{\Delta}$ if $\Delta>0$ and $a<\sqrt{\Delta}$.

We say that it is reduced if it is normal, $q=1 / a$, and

- $|b| \leq a \leq c$, and $(b \geq 0$ if $a=c)$ in the imaginary case
- $|\sqrt{\Delta}-2 a|<b<\sqrt{\Delta}$ in the real case,
where $c=\left(\Delta-b^{2}\right) /(4 a)$.

4.2 Quadratic forms

To represent ideals with binary quadratic forms, we use the map between primitive ideals of \mathcal{O}_{Δ} and binary quadratic forms of discriminant Δ

$$
a \mathbb{Z}+\frac{b+\sqrt{\Delta}}{2} \mathbb{Z}
$$

If we restrict to normal ideals and normal forms, which are the preimages of normal ideals, this map is actually a bijection. Let \mathfrak{a} and \mathfrak{b} be two normal ideals of \mathcal{O}_{Δ}. The quadratic form corresponding to $\mathfrak{a b}$ is the composition of the normal quadratic form $\phi_{\mathfrak{a}}$ representing \mathfrak{a} and the normal quadratic form $\phi_{\mathfrak{b}}$ representing \mathfrak{b}. In the following, we manipulate primitive representatives of classes of ideals, thus allowing ourselves to consider arithmetic operations on quadratic forms. The composition is described in Algorithm 1.

```
Algorithm 1 Composition of quadratic forms
Require: \(f_{1}=\left(a_{1}, b_{1}, c_{1}\right)\) and \(f_{2}=\left(a_{2}, b_{2}, c_{2}\right)\) with \(a_{1}>a_{2}\)
Ensure: The composition \(f_{3}=\left(a_{3}, b_{3}, c_{3}\right)\) of \(f_{1}\) and \(f_{2}\)
    \(s \leftarrow \frac{1}{2}\left(b_{1}+b_{2}\right)\)
    \(n \leftarrow b_{2}-s\).
    Compute \((u, v, d)\) such that \(u a_{2}+v a_{1}=d=\operatorname{gcd}\left(a_{2}, a_{1}\right), y_{1} \leftarrow u\)
    Compute \(\left(u, v, d_{1}\right)\) such that \(u s+v d=d_{1}=\operatorname{gcd}(s, d), x_{2} \leftarrow u, y_{2} \leftarrow-v\)
    \(v_{1} \leftarrow a_{1} / d_{1}, v_{2} \leftarrow a_{2} / d_{1}\)
    \(r \leftarrow\left(y_{1} y_{2} n-x_{2} c_{2} \bmod v_{1}\right)\)
    \(b_{3} \leftarrow b_{2}+2 v_{2} r, a_{3} \leftarrow v_{1} v_{2}\)
    \(c_{3} \leftarrow\left(c_{2} d_{1}+r\left(b_{2}+v_{2} r\right)\right) / v_{1}\)
    return \(\left(a_{3}, b_{3}, c_{3}\right)\)
```

The composition of quadratic forms is the same whether Δ is positive or negative. On the other hand, the reduction step differs. In the imaginary case, we always consider the unique reduced representative of a class. We describe in Algorithm 2 the reduction step of a primitive ideal for $\Delta<0$. This procedure can be applied independently to the unique reduced ideal of a given class or to the corresponding quadratic form.

```
Algorithm 2 Reduction of primitive ideals in the imaginary case
Require: \(\mathfrak{a}=(a, b, c)\) of negative discriminant
Ensure: Reduced ideal equivalent to \(\mathfrak{a}\).
    \(k \leftarrow\) false
    while \(k=\) false do
        if not \((-a<b \leq a)\) then
            \(b \leftarrow 2 a q+r\) with \(0 \leq r<2 a\) by Euclidean division of \(b\) by \(2 a\)
            \(c \leftarrow c-b q+a q^{2}\)
        end if
        \(k \leftarrow\) true
        if \(a>c\) then
            \(b \leftarrow-b\), exchange \(a\) and \(c, k \leftarrow\) false
        end if
        if \(a=c\) and \(b<0\) then
            \(b \leftarrow-b, k \leftarrow\) false
        end if
    end while
    return \((a, b, c)\)
```

Both composition and reduction of quadratic forms can be done in $O\left(\log ^{2}|\Delta|\right)$ bit operations. Reduced ideals have the property that $a, b<\sqrt{|\Delta|}$. So the reduced ideals gives reasonably small representative for each element of $\mathrm{Cl}_{\mathcal{O}_{\Delta}}$. Moreover, there is only one reduced ideal in the ideal class of an imaginary quadratic order. This allows us to identify elements of $\mathrm{Cl}_{\mathcal{O}_{\Delta}}$ with reduced binary quadratic forms of discriminant Δ.

References

[1] J. Buchmann, C.Thiel, and H.C. Williams. Short representation of quadratic integers. Computational Algebra and Number Theory, Mathematics and its Applications, 325:159-185, 1995.
[2] H.K. Lenstra. On the calculation of regulators and class numbers of quadratic felds. London Math. Soc. Lecture Note Series, 56:123-150, 1982.

