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3.1 Ideal class group

Definition 3.1 Let O be an order of K. We denote by

� IO the group of invertible fractional ideals of O

� PO the group of fractional principal invertible ideals of O, that is, invertible fractional ideals of the
form αO for α ∈ K.

Definition 3.2 (Ideal class group) Let O be an order of K. Its ideal class group is defined as

ClO = IO/PO.

Given a fractional ideal a ∈ IO, we denote by [a] its equivalence class in ClO. We emphasize here that if
a, b ∈ IO, then [a] = [b] if and only if ∃α ∈ K, b = (α)a.

The finiteness of the ideal class group of an order O of K can be proved by the means of Minkowski theory.
Following [4, Chap. 6], we present here the proof of the special case O = OK . To construct the Euclidean
lattice on which we will use Minkowski’s theorem, we first have to define the set

KR =

{
(zσ) ∈

∏
σ

C | zρ ∈ R, zσ = zσ

}
,

where the σ are the n embeddings of K into C and ρ are the r1 real embeddings where n = r1 + 2r2. We
then define the mapping Ψ : K → KR by

K −→ KR
Ψ : x 7 −→ (σ1(x), . . . , σn(x)),

We can prove the following proposition by using the definitions of volume and discriminant as determinants
of matrices. We refer to [4] Proposition 5.2 for a full proof.

Proposition 3.3 If a 6= 0 is an ideal of O, then Γ = Ψ(a) is a complete lattice in KR. Its fundamental
mesh has volume

vol(Γ) =
√
|d(O)|N(a),

where d(O) is the discriminant of O.

This allows us to prove the existence of elements in an ideal a of O of bounded norm.
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Corollary 3.4 Let a ⊂ O be an ideal of O, and let cσ > 0 for every embedding σ of K in C be real numbers
such that cσ = cσ and ∏

σ

cσ >

(
2

π

)r2 √
|d(O)|N(a).

Then there exists a ∈ a, a 6= 0 such that |σ(a)|< cσ for every embedding σ of K.

Proof: We first define the centrally symmetric convex set

X := {(zσ) ∈ KR | |zσ|< cσ} .

Its volume is given by vol(X) = 2r1+r2πr2
∏
σ cσ. We thus have from the previous proposition that

vol(X) > 2r1+r2πr2
(

2

π

)r2 √
|d(O)|N(a) = 2n vol(Γ).

We conclude by Minkowski’s first theorem that there exists a lattice point Ψ(a) ∈ X a 6= 0, a ∈ a.

Theorem 3.5 The ideal class group ClO is a finite group. Its order hO is called the class number .

Proof: Using Corollary 3.4, we show that for every fractional ideal a, there is a ∈ a such that

|N(a)| ≤
(

2

π

)r2 √
|d(O)|N(a).

Then we prove that the class of every fractional ideal b contains b0 such that N(b0) ≤
(
2
π

)r2 √|d(O)| by
applying the above inequality to a := b−1 and defining b0 := (a)b which satisfies the desired bound on the
norm, as well as [b0] = [b]. Now from the properties of prime ideal decomposition of ideals, there can only
be a finite number of ideals b0 that satisfy N(b0) ≤

(
2
π

)r2 √|d(O)| thus proving the finiteness of ClO.

To compute ClO, we need to identify a generating set B = {p1, . . . , pN} for ClO. We take the prime ideals
satisfying N(p) ≤ B for a bound B large enough to ensure that we generate the whole class group. The proof
of the finiteness of ClO showed that we could take the exponential bound B =

(
2
π

)r2 √|d(O)|. Unfortunately,
we have to rely on an unproven assumption to exhibit a moderate bound, namely the Generalized Riemann
Hypothesis. It states that the zeros of the Hecke L-function

L(s, χ) =
∑
a

χ(a)

N(a)s
,

satisfy Re(s) > 1/2 for any Hecke character χ. The idea of Bach’s theorem [1, 3] is to look at a character
χ defined modulo f := (f) where f the conductor of the order we work with over the ideals of OK and to
study the difference between L(s, χ) and ζ(s) = L(s, χ0) (where χ0 is the trivial character). They differ
by a large term coming from the pole of L(s, χ0) and by terms coming from zeros ρ of L(s, χ0) satisfying
0 < Re(ρ) < 1. Under GRH, one only has to care about the pole L(s, χ0), whose study allows one to derive
Bach’s bounds.

Theorem 3.6 (Bach) Let K be a number field of degree greater than 1, and let ∆ be the discriminant of
K. Let χ be a non principal character of the ideals of K that is defined modulo f, then

� χ(p) 6= 1 occurs for N(p) ≤ 3 log2
(
∆2N(f)

)
� χ(p) 6= 0, 1 occurs for N(p) ≤ 12 log2

(
∆2N(f)

)
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� χ(p) 6= 0, 1 and deg(p) = 1 occurs for N(p) ≤ 18 log2
(
∆2N(f)

)
To simplify the analysis, let us state the consequence of this theorem for the generators of Cl(OK). In this
case, we can use a character defined modulo f = 1. Let 〈B〉 ⊆ ClOK

be the set generated by the primes in
B for a bound B ≥ 12 log2

(
∆2
)

(note that here N(f) = 1 since O = OK). If 〈B〉 6= ClOK
, then there is a

non-trivial character ClOK
→ C∗ which is trivial on 〈B〉, which is a contradiction since by Bach’s theorem,

the ideals a for which χ(a) 6= 1 have to be in 〈B〉.

3.2 Unit group

Definition 3.7 We say that x ∈ O is a unit if

N(x) = ±1.

For every unit x, we have N(x) ∈ Z and consequently x ∈ O. In addition, by multiplicativity of the norm,
the units form a multiplicative group that we denote by O∗. We denote by µ(K) the multiplicative group
of the roots of unity.

∀x ∈ µ(K) ∃k ∈ N, N(x)k = N(xk) = N(1) = 1.

As N(x) ∈ Q, we know that N(x) = ±1 and thus

µ(K) ⊆ O∗.

We quote here the main result concerning the group of units of a number field. For a detailed proof of this
theorem, we refer to [4, Chap I §7] .

Theorem 3.8 Let r1 be the number of real embeddings of K and r2 the number of classes of complex
embeddings of K under the complex involution. O∗K can be decomposed as

O∗ ' µ(K)× Zr1+r2−1.

Let r := r1 + r2− 1. The previous result implies that there are units ε1, . . . , εr such that every unit ε can be
uniquely decomposed as ε = ξεν11 . . . ενrr , with ξ ∈ µ(K) and integers νi. Any r-tuple of elements ε1, . . . , εr
of O∗ satisfying this property is called a system of fundamental units of K.

The Archimedian valuations generalize the notion of absolute value on R. They are used to define the
regulator of K and the notion of reduced ideal.

Definition 3.9 (Archimedian valuation) Let i ≤ r + 1 and x ∈ K. We define the i-th Archimedian
valuation of x by

|x|i:= |σi(x)|.

We use the Archimedian valuations to define the logarithm function

K −→ Rr+1

Log : x 7 −→ (log|x|1, . . . , log|x|r+1),

which extends the notion of logarithm on the real numbers. We notice here that the logarithm vectors of
units form a lattice in Rr+1 since ∀x, y ∈ K, and ∀e ∈ Z

Log(x) + Log(y) = Log(xy)

eLog(x) = Log(xe).
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This lattice, which has dimension r in Rr+1 is called the lattice of units. The regulator of K is defined from
the volume of the fundamental mesh of the lattice of units of O∗K . The most constructive way of defining
this notion is to use the matrix

MR := (Log(εi))i≤r ∈ Rr×(r+1),

where the εi are a system of fundamental units of OK .

Definition 3.10 (Regulator) Let L be the lattice of units of OK , and let MR be a basis of L as defined
above. The absolute value of the determinant of an arbitrary minor of size r of MR is called the regulator
and denoted by RK or by R if there is no ambiguity.

3.3 Euler product

The regulator and the class number of OK are related via a relation involving Dedekind’s zeta function.

Definition 3.11 (Dedekind zeta function) The Dedekind zeta function is defined over the complex num-
bers s with Re(s) > 1 by

ξK(s) =
∑
a

1

N(a)
,

where the a are the integral ideals of OK .

Proposition 3.12 (Analytic class number formula) Let h and R be respectively the class number of
the maximal order of K and its regulator. These values satisfy the relation

hR =
|µ(K)|

√
|d(OK)|

2r1(2π)r2
lim
s→1

((s− 1)ξK(s)) .

As hR ∈ R, we can only hope to compute an approximation of it. In class group computation, if we get h∗

such that h∗ ≤ hR < 2h∗, this allows us to stop the computation once the correct class group/unit group has
been computed. Note that this means that the best known techniques for the computation of the class group
require us to compute the unit group as well. One of the most interesting cases in the study of isogenies is
when K is an imaginary quadratic field. Since r1 = 0, the rank of the unit group is 0, and it is only {±1}.
In this special case Proposition 3.12 gives in fact a recipe for the computation of an approximation of h and
not hR. Now a good enough estimate need to be computable efficiently. This again requires the Extended
Riemann Hypothesis to justify that the truncation of the product gives a good enough precision.

Proposition 3.13 (From [2]) Under the Extended Riemann Hypothesis, there is a polynomial time algo-
rithm to compute h∗ such that h∗ ≤ hR < 2h∗.

Archimedian valuations also allow us to define the notion of reduced ideal. The purpose of the reduction of
a fractional ideal a is to find an integral ideal a1 in the same class in ClOK

with minimal relative generator,
that is a minimal α ∈ K such that a = (α)a1.

Definition 3.14 (Minimum of an ideal) Let a be a fractional ideal of OK . We say that α ∈ a is a
minimum if

β ∈ a, |β|i< |α|i ∀i ≤ r ⇒ β = 0

We say that an ideal a is reduced if the smallest positive integer in a is a minimum in a.
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