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2.1 Fractional ideals

To construct the ideal class group, we need to define the notion of fractional ideal . We will list a few
properties relative to these objects without demonstrations. Complete proofs can be found in Chapter 1, §3
of Neukirch’s book on the subject [3]. There are different equivalent definitions of a fractional ideal of an
order O of a number field K. They naturally extend the notion of ideal of O when we define them as subsets
a of K such that there is an integer d > 0 with da an ideal of O. To differentiate fractional ideals from
ideals of O, we often refer to the latter as integral ideals of K. We now provide an alternative definition of
a fractional ideal of O.

Definition 2.1 (Fractional ideal) A fractional ideal of an order O of K is a finitely generated O-submodule
of K.

The above definition emphasizes the module structure of a fractional ideal of O. In particular, a fractional
ideal a is both an O-module and a Z-module. As an O-module, a is defined by 2 elements (we often call this
the 2-element representation), while a can also be viewed as a Z module, i.e. there exist a1, . . . , an (where
n = deg(K)) such that

a = Za1 + Za2 + . . .+ Zan.

Therefore fractional ideals are Euclidean lattices. Fractional ideals can be added and multiplied. If a =⊕
i≤n Zai and b =

⊕
i≤n Zbi, then we have

a + b = Za1 + . . .+ Zan + Zb1 + . . .+ Zbn
ab = Za1b1 + . . .+ Zanb1 + Za1b2 + . . .+ Zanb2 + . . .

Note that the generating sets presented above are not bases. Standard linear algebra techniques are required
to compute the basis of ab and a+ b, which run in polynomial time. Certain fractional ideals are invertible.
Let a ∈ IO. The inverse of a is given by

a−1 = {x ∈ K | xa ⊆ O} .

Invertible fractional ideals of O form a multiplicative group.

2.2 Prime ideals

Proposition 2.2 An order O of K is a one-dimensional noetherian integral domain, that is to say that
every prime ideal p ∈ O is maximal.
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Let p be a prime ideal of the order O of K. As it is a maximal ideal, O/p is a field called the residue class
field of p. For every prime ideal p there exists a prime number p such that p ∩ Z = pZ. We say that p lies
over p and we denote this property by p | p. Furthermore, for every prime p we have the following unique
decomposition

pOK = pe11 . . . pegg , (2.1)

where the pi are prime ideals of OK . For every i, the exponent ei is called the ramification index , and the
degree of the field extension

fi = [OK/pi : Z/p]

is called the inertia degree of pi over p. As K/Q is separable, we have the identity

g∑
i=1

eifi = n.

Definition 2.3 Using the above notations, we say that

� p splits completely if g = n. Hence ∀i, ei = fi = 1.

� p is inert if g = e1 = 1. In that case pOK = p1 and f1 = [K : Q].

� p ramifies (or K is ramified at p) if ∃i, ei ≥ 2.

We can compute the prime ideals occurring in (2.1) for most of the primes in the case Z[θ] ⊆ O from
Kummer’s theorem. For a proof of this theorem we refer to [1, Theorem 4.8.13].

Theorem 2.4 (Kummer) Let O be an order of K satisfying Z[θ] ⊆ O, and f = [O : Z[θ]] the index of θ
in O. Then for any prime p - f we can obtain the prime decomposition as follows. Let

T (X) ≡
g∏

i=1

Ti(X)ei mod p

be the decomposition of T into monic irreducible factors in Fp[X]. Then

pO =

g∏
i=1

peii ,

where
pi = pO + Ti(θ)O.

Furthermore fi = deg(Ti(X)).

When p divides the index, the situation is more difficult, but there are methods to deal with it [1, Chap.
6]. As only a finite number of p divide the index, we already cover almost all prime ideals with the above
method.

Example 1 If d ≡ 2, 3 mod 4, the order O = Z[
√
d] is the maximal order, and in this case, the index of

√
d

is 1. Let us choose d = 10 for example. In this case, T (X) = X2 − d.

� T (X) ≡ X2 − 1 = (X − 1)(X + 1) mod 3. Therefore p = 3 is totally split, and the two primes above 3
are p1 = 3O + (

√
10 + 1)O and p2 = 3O + (

√
10− 1)O. Moreover, O/p1 ' O/p2 ' F3.
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� T (X) ≡ X2 mod 5. Therefore p = 5 ramifies, and the only prime above p = 5 is p = 5O +
√

10O.
Moreover, O/p ' F5.

� T (X) ≡ X2 + 4 mod 7 is irreducible. Therefore p = 7 is inert, and the only prime above p = 7 is
p = 7O + 14O = 7O. Moreover, O/p ' F72 .

This algorithmic construction of almost of of the prime ideals allows us to derive the construction of ideals
a.

Proposition 2.5 Let a ∈ IO, then there exist a unique integer k and unique prime ideals pi satisfying

a = pe11 . . . pekk .

2.3 Norm of an ideal

Now, let us extend the notion of norm to fractional ideals of an order O. Let a be a fractional ideal of an
order O of K. We define its norm by

N(a) := |O/a| .

The norms of a and aOK correspond when a is coprime with (f). Indeed, in that case, the multiplication
by f induces an isomorphism between OK/aOK and O/a (see [2]), and we thus have |O/a| = |OK/aOK |.
We can verify that the norm on ideals is multiplicative and that furthermore for α ∈ K

N ((α)) = N(α),

that is to say that the two notions correspond for elements of K and principal ideals generated by them. In
particular, if p is a prime such that p =

∏
i p

ei
i , then for every i we have N(pi) = pfi where fi = [O/pi : Z/p].

The notion of norm of fractional ideals is useful to determine which primes divide a certain fractional ideal
a. We extend norms to fractional ideals naturally with the rule N(a/b) = N(a)/N(b).

References

[1] H. Cohen. A course in computational algebraic number theory, volume 138 of Graduate Texts in Mathe-
matics. Springer-Verlag, 1991.

[2] D. A. Cox. Primes of the form x2 + ny2. John Wiley & Sons, 1989.

[3] J. Neukirch. Algebraic number theory. Comprehensive Studies in Mathematics. Springer-Verlag, 1999.
ISBN 3-540-65399-6.


