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1.1 First definitions

Let T be an irreducible polynomial degree n. We say that K is the number field defined by T if it satisfies

K ' Q[X]/(T (X)).

We denote by θ ∈ C a root of T such that K = Q(θ). In particular, a number field K always satisfies two
things:

� K ⊂ C.

� [K : Q] = deg(T ).

Let n = [K : Q], there are n different complex embeddings σ1, . . . , σn : K → C. These different ways to
embed K into C correspond to a choice of an injective morphism K → C where θ gets mapped to a different
root of T in C. While the embeddings themselves are different, they preserve the structure of K as a whole.
Let r1 be the number of embeddings satisfying σi(K) ⊆ R, namely the real embeddings. We refer to the
others as the complex embeddings and denote by r2 the number of equivalence classes of such embeddings
under the complex involution x 7→ x. Therefore r1 and r2 satisfy n = r1 + 2r2.

Example 1 (Real quadratic fields) To illustrate these notions, let us start with real quadratic fields. Let
d > 0 be a square free integer. Then K = Q(

√
d) is the number field corresponding to T = X2 − d. Its

elements have the form x = a+ b
√
d for a, b ∈ Q. Its embedding are all real:

� σ : α 7→
√
d.

� σ : α 7→ −
√
d.

Therefore, its signature is r1 = 2 and r2 = 0.

Example 2 (Imaginary quadratic fields) Our next example is the other kind of quadratic fields, namely
the imaginary ones. Let d > 0 be a square free integer. Then K = Q(

√
−d) is the number field corresponding

to T = X2 + d. Its elements have the form x = a+ b
√
−d for a, b ∈ Q. Its embedding are all complex:

� σ : α 7→ i
√
d.

� σ : α 7→ −i
√
d.
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Therefore, its signature is r1 = 0 and r2 = 1. In particular, the two complex embeddings are conjugates: i.e.
one is obtained from the other one by complex conjugation.

Example 3 (Cyclotomic fields) Of less relevance to isogenies, the cyclotomic fields are nonetheless a
very important family of number fields. Let n ≥ 1, and let ζn be a primitive n-th root of unity (i.e. ζnn = 1,
but ζkn 6= 1 for k < n). The cyclotomic field of conductor n is K = Q(ζn). Its defining polynomial is the n-th
cyclotomic polynomial

Φn(X) =
∏

1≤k≤n
gcd(n,k)=1

(
X − e2iπk/n

)
.

For n > 1, its embeddings are all complex and given by ζn 7→ e2ikπ/n for 1 ≤ k ≤ n and gcd(n, k) = 1. In
particular, the signature of the field is then r1 = 0, r2 = ϕ(n)/2 where ϕ(n) is the degree of Q(ζn).

1.2 Norm and trace

The first notion that immediately derives from the calculation of the embeddings of an element in C is the
algebraic norm. Many algorithms related to class group computation require us to understand which primes
divide the norm of a given element.

Definition 1.1 (Norm and Trace) Let K be a number field of degree n, σi be the n distinct embeddings
of K in C, and α ∈ K. We define the norm and trace maps by

N(α) =
∏
i≤n

σi(α)

Tr(α) =
∑
i≤n

σi(α).

The norm and trace maps satisfy: ∀α, β ∈ K

Tr(α+ β) = Tr(α) + Tr(β)

N(αβ) = N(α)N(β).

The norm map can be extended to ideals which will be useful in the following since it will allow us to decide
whether an element of the class group is smooth. We thus need an explicit formula to compute N(α) for
α ∈ K. Any element α ∈ K can be decomposed as

α =
1

d

(
n∑
i=0

aiθ
i

)
,

where ai, d ∈ Z. Let A(X) =
∑
i aiX

i ∈ Z[X], then we can prove by using [1, Proposition 4.3.4] that

N(α) =
1

dn
Res(T (X), A(X)), (1.1)

where Res(T,A) denotes the resultant of the polynomials T and A.

Example 4 Suppose α = a+ b
√
d is an element of Q(

√
d) for d > 0 squarefree, then

� N(α) = (a+ b
√
d)(a− b

√
d) = a2 − b2d.

� Tr(α) = (a+ b
√
d) + (a− b

√
d) = 2a.
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1.3 Orders and the ring of integers

The notion of order is really important, in particular because of its connection with the computation of
isogenies. Indeed, it will be shown in future modules of this summer school that orders in a quadratic
field defined by the characteristic polynomial of the Frobenius endomorphism are isomorphic to the ring
of endomorphisms of ordinary elliptic curves. More generally, the maximal order generalizes the notion of
integers in number fields. In particular, ideals in number fields are understood to be ideals of orders (which
have a ring structure).

Definition 1.2 (Order) O is said to be an order of K if it is a subring of K which is an n-dimensional
Z-module.

A Z-basis of a module O is called an integral basis. It has n elements where n = [K : Q]. This means that
for any order O of K there are n linearly independent elements a1, . . . , an ∈ K such that

O = Za1 + Za2 + . . .+ Zan.

This means that orders have the structure of a Euclidean lattice. Orders are (partially) ordered by inclusion.
If O and O′ are orders of K with O ⊆ O′, then the index of O in O′ is [O′ : O]. We denote by OK the
maximal order of K.

Example 5 The order O = Z[ζn] is an order of Q(ζn). It is in fact its maximal order. Let ak = ζkn for
1 ≤ k ≤ n and gcd(n, k) = 1. Then we have

Z[ζn] =
⊕

1≤k≤n
gcd(n,k)=1

Zak.

Note that there are many examples of fields Q(θ) whose maximal order is strictly larger than Z[θ].

Definition 1.3 (Discriminant) Let O be an order of K of integral basis b1, . . . , bn, the discriminant d(O)
of O is defined by

d(O) = det(σi(bj))
2 = det (Tr(bibj)) .

The notion of discriminant is important since we need it to measure the hardness of problems such as class
group computation and the discrete logarithm problem whose complexities are taken as functions of the bit
size of the discriminant. As the elements of an order O have a minimal polynomial with coefficients in Z,
we thus know that d(O) ∈ Z. More generally, one can define the discriminant d(α1, . . . , αn) of an arbitrary
n-tuple of points in K as det(σi(αj)) ∈ Q. In particular, Z[θ] is an order of K satisfying

d(Z[θ]) = d(T ) = d(OK)f2,

where d(T ) denotes the discriminant of the polynomial T and f = [OK : Z[θ]]. In general, f 6= 1 and thus
Z[θ] ( OK . When O ( OK , f := [OK ,O] is called the conductor of O.

Example 6 The discriminant of Z[ζn] for n ≥ 2 is given by

d(Z[ζn]) = (−1)ϕ(n)/2
nϕ(n)∏

p|n p
ϕ(n)(p−1) .
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