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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

In this lecture, we recall the main result of the subexponential method for computing the class group and
solving the PIP in number fields of large degree of [1, 2].

8.1 BKZ reduction of ideals

The main ingredient of the computation of class groups in large degree number fields is a reduction algorithm
that takes as input an ideal a ⊆ OK and returns another ideal of norm bounded by the invariant of the fields
only in the same ideal class as a.

Algorithm 1 BKZ-ideal reduction

Require: a ∈ OK , and block size k > 0.
Ensure: α ∈ K such that (α) · a ⊆ OK has bounded norm.
1: c

l ← a−1 where c ⊆ OK , and l > 0.
2: γ ← first element of a BKZ-reduced basis of c with block size k.
3: return γ

l

Proposition 8.1 Algorithm 1 with k = n2/3 runs in time

Poly(log|∆K |, log(N(a))) · 2Õ(n2/3),

and returns α = γ/l such that

� N((α) · a) ≤ 2Õ(n4/3)
√
|∆K |.

� log(l), log‖γ‖∈ Poly(log(N(a)), log|∆K |).

Proof: BKZ with block size k returns γ ∈ c such that

‖γ‖≤ kn/2k|∆K |1/2nN(c)1/n

in time 2Õ(k) · Poly(log|∆K |, log(N(c))). Moreover, we have N(a) ≤ l and

N(c) ≤ ln/N(a) ≤ ln−1 ≤ N(a)n−1 ≤ N(I)n.

This proves the bounds on the size of l and ‖γ‖. Additionally, we have

N((α) · a) =
N(γ)

N(l)
N(a) =

N(γ)

N(l)

N(l)

N(c)
≤ ‖γ‖

n

N(c)
≤

2Õ(n4/3)
√
|∆K |N(c)

N(c)
,

which shows the bound on the norm of the reduced ideal (α)a.

8-1



8-2 Lecture 8: Class groups of large degree fields

8.2 Relations between ideals

Given an input ideal a and factor basis of prime ideals B whose classes generate Cl(OK), we want to return
a decomposition of the ideal class of a over 〈B〉. This is done by multiplying short products of primes in
B, BKZ-reducing the resulting ideal, and checking whether it decomposes as a product of elements in B.

We assume that S = {p prime ideals with N(p) ≤ 2(log|∆K |)2/3}. As in the quadratic case, we use the fact
that under the GRH, primes of norm up to 12(log|∆K |)2 generate Cl(OK), and that the class of an ideal
multiplied by a short product of such primes is almost uniformly distributed in Cl(OK). This procedure is
described in Algorithm 2. As of now, the run time of Algorithm 2 is only heuristic. The probability of (α) ·a′

Algorithm 2 Decomposition of an ideal

Require: a ∈ OK .

Ensure: α ∈ K, and (xi)i≤l ∈ Zl with (α) · a =
∏
i p
xi
i and N(pi) ≤ 2Õ((log|∆K |)2/3).

1: S = {p prime ideals with N(p) ≤ 2(log|∆K |)2/3}, and l← |B|.
2: S0 = {p prime ideals with N(p) ≤ 12(log|∆K |)2}, and l0 ← |B|
3: while true do
4: (xi)

R←− [0, log|∆K |]l0 . a′ ← a ·
∏
i≤l0 p

xi
i .

5: Compute α with Algorithm 1 on input a′, k = n2/3.
6: if (α) · a′ is B-smooth then
7: Compute ~y such that (α) · a′ =

∏
i≤l p

yi
i .

8: ~x← ~y − ~x||~0.
9: return α, ~x

10: end if
11: end while

being B-smooth is not rigorously understood at this point, but there are rigorous results mentioned in [2,
Sec. 3.1] showing that the proportion of ideals of norm less than ι that are a product of prime ideals of norm
less than µ is e−u log(u)(1+o(1)) where u = log(ι)/log(µ). Heuristic 1 of [2, Sec. 3.1] conjectures that this is
also the smoothness probability of the reduced ideal (α) · a′ of Step 6. Due to the fact that the Cayley graph
of Cl(OK) is an expander, we can argue that the ideal class of a′ is distributed almost uniformly at random,
but so far, there is no rigorous proof of how the multiplication by α obtained with Algorithm 1 influences
the smoothness probability.

Conjecture 1 (Heuristic 1 of [2]) Let k > 0, and let a be an ideal in a class of Cl(OK) that is drawn
uniformly at random, and let a′ be the output of Algorithm 1 with input a, k. Then the probability of I ′ being
a product of prime ideals of norm less than µ is e−u log(u)(1+o(1)) where u = log(N(a′))/log(µ).

Proposition 8.2 (under GRH and Conjecture 1) Algorithm 2 is correct and has asymptotic complex-

ity in Poly (log(N(I))) · 2Õ((log|∆K |)2/3) and returns α = γ/l ∈ K, ~x ∈ Zl such that (α) · I =
∏
i≤l p

xi
i with

γ, l, ~x of polynomial size.

Proof: We apply Proposition 8.1 to the ideal a′ = a·
∏
i≤l0 p

xi
i . It satisfies log(N(a′)) ∈ Poly (log(N(a)), log|∆K |),

which proves the bound on the size of ‖γ‖ and l. Moreover, the runtime is Poly (log(N(a))) · 2Õ(k) where k is
the block size used for the BKZ reduction, hence giving us the cost of one reduction. Then, assuming Conjec-
ture 1, the probability that the resulting reduced ideals a′ whose norms satisfy log(N(a′)) ∈ Õ

(
(log|∆K |)4/3

)
be S-smooth is in

1

2
Õ

(
(log|∆K |)4/3

(log|∆K |)2/3

) =
1

2Õ((log|∆K |)2/3)
.
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This shows that the expected cost to find a relation is in Poly (log(N(a))) · 2Õ((log|∆K |)2/3). Finally, the size
of the output vector derives from the fact that it is of the form ~y − ~x||~0 where log‖~x‖∈ Poly(log|∆K |) by
construction, while ~y is the decomposition of the BKZ-reduced ideal a′ with respect to B.

8.3 Computation of the class group

The general strategy to compute the class group is to apply Algorithm 2 to I = OK as many times as it takes
in order to compute a basis for the lattice Λ of vectors ~x ∈ Zl such that

∏
i p
xi
i ∼ (1), i.e. the so-called lattice

of relations between elements of B. To justify the run time of this class group procedure, we need to make
an additional heuristic, which corresponds to Heuristic 3 of [2]. It argues that the relations drawn during
Algorithm 2 are well-enough distributed among the full lattice of relations between classes of primes in B.
Even though Algorithm 2 uses randomization, we have no guarantee on the distribution of the relations we
create. In [3, Sec. 3.1], Hafner and McCurley show how to estimate this distribution rigorously in the case
of quadratic fields, and they show in [3, Sec. 3.2] that once a sublattice of rank |B| is found, only |B|1+o(1)

extra relations need to be found randomly to complete the lattice of relations.

Conjecture 2 (Heuristic 3 of [2]) With probability 1 − 1/|∆K |, the number of iterations of the relation
search procedure given by Algorithm 2 is bounded by |B|1+o(1).
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