
Isogeny-based Cryptography School Summer 2021

Lecture 6: The Hafner-McCurley Class Group Algorithm
Lecturer: Jean-François Biasse TA: R. Erukulangara and W. Youmans

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

The goal of this lecture is to prove the following theorem due to Hafner and McCurley [3].

Theorem. Under the Extended Riemann Hypothesis, there is a Las Vegas algorithm for computing the ideal
class group of an imaginary quadratic order.

In the following, we identify ideal classes with reduced quadratic forms of discriminant −d for d > 0 such
that −d is a quadratic discriminant. Given two forms f1, f2, the operation f1f2 is the composition and
reduction of the result, thus giving the ideal class represented by the product of the ideal classes represented
by f1, f2.

6.1 Overview

Let us use fi to denote the equivalence class [(pi, bi, .))]. These equivalence classes are called as prime forms.
We define the subexponential function L by

L(d) := e
√

log d log log d.

Let n = L(d)z+o(1) for a fixed positive number z. Then the classes [(pi, bi, .)], 1 ≤ i ≤ n generate the class
group Cl(−d) from Bach’s bounds. we can define a homomorphism ϕ : Zn → Cl(−d) by

ϕ(x1, ..., xn) =

n∏
i=1

fxii

An integer relation on f1, ..., fn is the vector (x1, ..., xn) ∈ Zn such that ϕ(x1, ..., xn) =
∏n

i=1 f
xi
i = 1Cl(−d)

where 1Cl(−d) is the identity element of the class group C(−d). Relations in f1, ..., fn form an additive
subgroup of Zn (i.e. a Euclidean lattice) which we denote as Λ. Since ϕ is surjective, we have

Zn/Λ ∼= Cl(−d).

Therefore, the computation of Cl(−d) reduces to the search for relations between the f1, . . . , fn. Once enough
relations are collected to generate Λ, a polynomial time linear algebra phase yields the quotient Zn/Λ, and
therefore the ideal class group Cl(−d).

The subexponential algorithm of Hafner and McCurley consists in the choice of a factor basis f1, . . . , fn, and
the resolution of the following two main tasks

� Finding a generating set of elements of Λ, the lattice of relations between factor basis elements.

� Computing the quotient Zn/Λ.

6-1

6-2 Lecture 6: The Hafner-McCurley Class Group Algorithm

The quotient computation is well understood, and essentially corresponds to the computation of the Smith
Normal Form (SNF) of the matrix representing a basis for Λ.

Making a formal case for the run time without the heuristic that elements sampled in Λ behave randomly
demands a little bit of care. We need 3 different phases.

� Phase 1: For each k = 1, . . . , n, we compute a relation whose k-th coefficient is significantly larger
than the others. This ensures the fact that at the end of the collection of the first n relations, the
lattice Λ0 they generate has full rank.

� Phase 2: We construct additional relations in order to ensure that at the end of this phase, the lattice
Λ1 they generate satisfies det(Λ1) ∈ 2O(log4 d).

� Phase 3: Once we have det(Λ1) ∈ 2O(log4 d), we use an expensive randomization process to find the
few extra relations needed to generate Λ.

6.2 Phase 1

In this section, we show how to create n linearly independent relations between the (fi)i≤n. We ensure that
the matrix (ai,j) whose rows are the relation vectors satisfies |aii|>

∑
j 6=i|ai,j |, which in turns guarantees

that the matrix (ai,j) has full rank. To reduce the run time of the relation search, we use the fact that the
Cayley graph of Cl(−d) is an expander graph. Let n0 be such that

f1, . . . , fn0
=

{
Prime forms corresponding to p ≤ log2+ε(d) and

(
d

p

)
6= 1

}
.

Choosing t = log(d)� C log|Cl(−d)|
log log d , we draw random vectors ~x of `1-norm t until f ·

(∏
i≤n0

fxii

)
factors as

a product of elements of B (i.e. is B-smooth).

Proposition 6.1. Under the ERH, there is a Las Vegas algorithm that takes as input a reduced quadratic
form f , and returns ~x ∈ Zn of `1-norm bounded by 2 log d such that f =

∏
i≤n f

xi
i in time

L(d)1/4z+o(1) + L(d)z+o(1).

Its probability of success is at least 1− 1
d1+o(1) .

Proof. Each attempt at drawing ~y ∈ Zn0 of `1-norm log d such that
∏

i≤n0
·f is B can be viewed as a random

walk in the Cayley graph of Cl(−d) of length log d. It has a probability at least |S|
2|Cl(−d)| of landing in a

subset S ⊆ Cl(−d). We choose S to be the classes corresponding to the smooth reduced quadratic forms.
For this, it was shown by Seyssen [5] that the probability is at least 1/L(d)1/4z+o(1). This means that we
can repeat this experiment L(d)1/4z+o(1) times to have a probability 1− 1

d1+o(1) of success.

Now rather than testing the smoothness of each of the L(d)1/4z+o(1) reduced forms we collect, we run
Bernstein’s batch smoothness test [1] only once on the whole set, which has a run time of L(d)1/4z+o(1) +
L(d)z+o(1).

Finally, once a suitable ~y such that f ·
∏

i f
yi
i = f ′ for a reduced smooth form f ′ is found, we decompose

f ′ =
∏

i f
zi
i , and we obtain the relation

∏
i f

zi−yi
i = 1Cl(−d). Since the norm of f ′ is less than

√
d, we have

that the `1-norm of ~z is less than log d and thus the `1 norm of ~x := ~z − ~y is less than 2 log d.

Lecture 6: The Hafner-McCurley Class Group Algorithm 6-3

Given the above building block (which will be reused in subsequent phases, and even for applications in future
lectures such as DLP, ideal decomposition etc ...), we can easily compute a full rank matrix of relations by
choosing f = f2nd

i for each of the n elements fi ∈ B. This ensures that the i-th row (ai,j)j≤n has a dominant
i-th coefficient as requested.

Proposition 6.2. Under the ERH, there is an algorithm that outputs n linearly independent relations
between elements of B with probability at least 1− 1

d1+o(1) in time

L(d)z+o(1)
(
L(d)z+o(1) + L(d)1/4z+o(1)

)
.

6.3 Phase 2

At the end of Phase 1, we have a sublattice Λ0 ⊆ Λ of full rank with det(Λ0) < n5n/2dn by Hadamard bound.
Then we add new relations hoping that they do not belong to the previous sublattice of relations. Starting
with Λ1 = Λ0, each time we find ~x /∈ Λ1, and update Λ1 by doing

Λ1 ← Λ1 + Z~x,

the determinant of Λ1 gets divided by at least a factor 2.

To create relations, we first draw a vector ~y uniformly at random in Wn(d2) for

Wn(t) := {x : x ∈ Zn, ‖x‖∞≤ t},

and we compute the reduced form f =
∏

i f
yi
i . Then we use Proposition 6.1 to create ~x ∈ Zn such that

f =
∏

i f
xi
i . Then we have that ~y−~x ∈ Λ is a relation. The question is “does it belong to Λ1?”. For ~y−~x to

be outside of Λ1, it suffices that the random vector ~y drawn from Wn(d2) be sufficiently far from Λ1. Indeed,
we know that the `1-norm of ~x is less than 2 log d, therefore it suffices to draw ~y at distance 2 log d+ ε from
Λ1 to guarantee that the resulting relation is not in Λ1. In other words, we need to draw ~y in Wn(d2) \V for

V :=
{⋃

B(x, (2 + ε) log d) : x ∈ Λ1

}
,

where B(x, r) denotes the n-dimensional sphere of radius r for the Euclidean distance, centered at x.

To evaluate the odds of drawing ~y outside of V , we compute an upper bound on the number of integer points
in V . We need to answer two questions:

� How many lattice points of Λ1 are there in Wn(d2)?

� What is an upper bound on the number of integer vectors in each B(x, (2 + ε) log d)?

The first question is answered by [3, Lem. 1] which implies that

∣∣Λ1 ∩Wn(d2)
∣∣ ∈ (2d2)n

det(Λ1)
.

(
1 +O

(
n3

d

))
.

Then, according to [4, Corollary 1.4], the number of integer elements contained inside each individual n-

dimensional sphere is bounded from above by 3.eπ.k
2.r2

2 , where r is the radius of the sphere and k = 10(log n+
2). Choosing r = (2 + ε) log d yields

∣∣Wn(d2) \ V
∣∣ ≥ (2d2)n − (2d2)n

elog4 d(1+o(1))
(1 + o(1))

6-4 Lecture 6: The Hafner-McCurley Class Group Algorithm

whenever det(Λ1) ≥ elog4d(1+o(1)). In these conditions, the probability of drawing ~y in Wn(d2) \V is at least
1 + 1

elog4 d(1+o(1))
.

We repeat this process log2

(
n5n/2dn

)
= n1+o(1) times to ensure that even with the pessimistic estimates on

det(Λ0) and even if we decrease the determinant by a factor 2 at a time, we end up with det(Λ1) < elog4 d

at the end of the phase. We compute the determinant of Λ1 in time n3+o(1) by reducing it with [6, Th. 58]
to the case of a square matrix and then by using the Smith Normal Form algorithm for square nonsingular
matrices of [2].

Proposition 6.3. Under the ERH, Phase 2 produces a sublattice Λ1 such that det(Λ1) < elog4 d with prob-
ability at least 1− 1

d1+o(1) in time

L(d)3z+o(1) + L(d)z+1/4z+o(1).

Proof. The cost of each relation is that of the computation of f , which is in L(d)z+o(1), and of the execution
of the relation search of Proposition 6.1 which is in L(d)1/4z+o(1) + L(d)z+o(1). This is repeated L(d)z+o(1)

times for a total cost of L(d)z+1/4z+o(1) +L(d)2z+o(1). Then the final determinant computation runs in time
L(d)3z+o(1) thus proving our statement on the run time.

The probability of success is at least that of succeeding n1+o(1) times at creating a relation outside of Λ that
satisfies det(Λ1) ≥ elog4 d. This means it is at least(

1− 1

elog4 d(1+o(1))

)n1+o(1)

·
(

1− 1

d1+o(1)

)n1+o(1)

= 1− 1

d1+o(1)
.

6.4 Phase 3

At the beginning of Phase 3, we have Λ1 ⊆ Λ with |Λ/Λ| < elog4 d. Then we create a tower of sublattices
(Λi)2≤i≤m of the lattice of relations such that

Λ0 ⊆ Λ1 ⊆ . . . ,⊆ Λm = Λ.

The key observation proved in [3, Lem. 2] is that when relations are obtained simply by testing the B-
smoothness of elements f =

∏
i f

xi
i for a vector ~x drawn uniformly at random in Wd(d2), the probability

that they belong to a given coset in Λ/Λ1 is essentially given by det(Λ)/det(Λ1). This means that new
relations have somewhat comparable chances of landing in different cosets of Λ/Λ1. Once every cost has
been hit at least once, the relation collection is complete. We can show that only log4 d(1 + o(1)) such
steps are required to generate the whole lattice Λ with good enough probability. This point is important
because unlike in Phase 2, the cost of finding each individual relation is L(d)z+1/4z+o(1) due to the fact that
we recompute a new f for each form tested for smoothness. At the end, we use the Smith Normal Form
algorithm described in the previous section that relies on [2, 6] to produce d1, . . . , dn such that

Cl(−d) = Z/d1Z⊕ Z/d2Z⊕ . . .⊕ Z/dnZ.

Theorem 6.4. Under the ERH, there is a Las Vegas algorithm to compute Cl(−d) in time L(d)3/
√

8+o(1)

with probability at least 1− 1
d1+o(1) .

Proof. As mentioned above, each relation obtained by drawing ~x ∈ Wn(d2) and test it for smoothness
(using [1]) takes time L(d)z+1/4z+o(1). We can also show using [3, Lem. 2] that the probability that the

Lecture 6: The Hafner-McCurley Class Group Algorithm 6-5

resulting relation is in any given coset of Λ/Λ1 is in det(Λ)
det(Λ1) (1 + o(1)). Then, as observed in [3, Lem. 2] we

generate all of Λ with probability at least 1− 1
d after collecting m relations where m satisfies

m ≥ log|Λ/Λ1|+ log d

log(2/α)

for some α = 1 +O
(

n3

d

)
. This means that a polynomial number of relations is required, which proves that

the run time is again
L(d)3z+o(1) + L(d)z+1/4z+o(1).

This value is minimized for z = 1/
√

8, which yields a total run time of L(d)3/
√

8+o(1).

References

[1] D. Bernstein. How to find smooth parts of integers. submited to Mathematics of Computation.

[2] A. Birmpilis, G. Labahn, and A. Storjohann. A Las Vegas algorithm for computing the smith form of
a nonsingular integer matrix. In I. Emiris and L. Zhi, editors, ISSAC ’20: International Symposium on
Symbolic and Algebraic Computation, Kalamata, Greece, July 20-23, 2020, pages 38–45. ACM, 2020.

[3] J.L. Hafner and K.S. McCurley. A rigorous subexponential algorithm for computation of class groups.
J. Amer. Math. Soc., 2:837–850, 1989.

[4] O. Regev and N. Stephens-Davidowitz. A reverse minkowski theorem. In Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, page 941–953, New York, NY, USA,
2017. Association for Computing Machinery.

[5] M. Seysen. A probabilistic factorization algorithm with quadratic forms of negative discriminant. Math-
ematics of Computation, 48:757–780, 1987.

[6] A. Storjohann. The shifted number system for fast linear algebra on integer matrices. J. Complex.,
21(4):609–650, 2005.

