
MAT 4930: Quantum Algorithms and Complexity Spring 2021

Lecture 11: Shor’s factoring algorithm
Lecturer: Jean-François Biasse TA: Robert Hart

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

11.1 Order finding in (Z/NZ)∗

As we previously saw, the factorization of an RSA integer N can be reduced to the search for the order of
a random element a ∈ {0, . . . , N − 1} modulo N (and if a is not coprime to N , then there is no need for
a quantum computer). In this section, we show how this could be done if the order of the group (Z/NZ)

∗

were known. This is obviously not the case when we do not know the factorization of N . Indeed, the only
known method to compute φ(N) = |(Z/NZ)

∗ |= (p− 1)(q− 1) is to compute p and q, i.e. to factor N . If we
do that, then we are no longer interested in the order of a in (Z/NZ)

∗
. However, this hypothetical search

of the order of a modulo N shows some of the essential ingredients of Shor’s algorithm which we formally
describe in Section 11.2.

We assume here that we have a Quantum Fourier Transform modulo φ(N). In the actual Shor’s algorithm,
we will work modulo 2n for n a large enough bound on the bit size of N . This means that we have an
implementation of

|x〉 7 −→ 1√
φ(N)

φ(N)−1∑
y=0

e
2iπxy
φ(N) |y〉 .

We assume a ∈ {0, . . . , φ(N) − 1} coprime to n was drawn uniformly at random. Its (unknown) order r
satisfies r | φ(N). Now we additionally assume that we can create a uniform superposition of elements in
(Z/NZ)

∗
:

|ψ〉 :=
1√
φ(N)

φ(N)−1∑
x=0

|x〉 .

When working modulo 2n, this operation is simply done by applying H⊗n to the input state |0〉⊗n, but
when φ(N) is not a power of 2, this is potentially a little more complicated. Then we remeber that we can
efficiently implement the a-to-the-power-x gate

|x〉
c− Uxa

|x〉

|y〉 |yax mod N〉

On input |ψ〉 ⊗ |1 mod N〉, this circuit yields the state

|ψ0〉 =
1√
φ(N)

φ(N)−1∑
x=0

|x〉 |ax mod N〉 .

11-1

11-2 Lecture 11: Shor’s factoring algorithm

As a has order r | φ(N), the possible values for ax mod N for x ∈ {0, . . . , N − 1} are

1, a, a2, . . . , ar−1, 1, a2, . . . , ar−1, , 1, a, a2, . . . , ar−1.

The sequence 1, a, a2, . . . , ar−1 is repeated φ(N)/r times. Therefore, the state can be re-written as

|ψ0〉 =

r−1∑
b=0

 1√
φ(N)

φ(N)/r−1∑
z=0

|zr + b〉

∣∣ab mod N
〉
.

Then, we measure the second register to obtain ab for some b ∈ {0, . . . , r− 1}. This leaves the system in the
following state

|ψ1〉 :=
1√

φ(N)/r

φ(N)/r−1∑
z=0

|zr + b〉
∣∣ab mod N

〉
.

We can discard the second register, and apply to the first register the inverse of the QFT modulo φ(N) that
does

QFT−1φ(N) : |x〉 7 −→ 1√
φ(N)

φ(N)−1∑
y=0

e−
2iπxy
φ(N) |y〉 .

We thus obtain

QFT−1φ(N)√
φ(N)/r

φ(N)/r−1∑
z=0

|zr + b〉 =
1√

φ(N)
√
φ(N)/r

φ(N)/r−1∑
z=0

φ(N)−1∑
y=0

e−
2iπ(zr+b)y

φ(N) |y〉

=
1√

φ(N)
√
φ(N)/r

φ(N)−1∑
y=0

φ(N)/r−1∑
z=0

e−
2iπ(zr+b)y

φ(N) |y〉

=
1√

φ(N)
√
φ(N)/r

φ(N)−1∑
y=0

e−
2iπby
φ(N)

φ(N)/r−1∑
z=0

e−
2iπzry
φ(N)

 |y〉
=

1√
φ(N)

√
φ(N)/r

φ(N)−1∑
y=0

e−
2iπby
φ(N)

φ(N)/r−1∑
z=0

ζz

 |y〉 ,
where ζ := e−

2iπy
φ(N)/r . When y 6≡ 0 mod φ(N)/r, we have

φ(N)/r−1∑
z=0

ζz =
1− ζφ(N)/r

1− ζ
= 0.

On the other hand, if y ≡ 0 mod φ(N)/r, then let 0 ≤ k < r such that y = k φ(N)
r . We have

φ(N)/r−1∑
z=0

ζz =
φ(N)

r
and e−

2iπby
φ(N) = e−

2iπbk
r .

This means that our state can be re-written as

1√
φ(N)

√
φ(N)/r

φ(N)−1∑
y=0

e−
2iπby
φ(N)

φ(N)/r−1∑
z=0

ζz

 |y〉 =
1√
r

r−1∑
k=0

e−
2iπbk
r |kφ(N)/r〉 .

Hence, a measurement of the system yields y = kφ(N)/r for k ∈ {0, . . . , r − 1} distributed uniformly at
random. Such a y satisfies y

φ(N) = k
r . Whenever k is coprime with r, this fraction yields r directly.

Lecture 11: Shor’s factoring algorithm 11-3

Proposition 11.1 (Probability of success) With the above notations, the probability p of successfully
recovering r satisfies

p ∈ Ω

(
1

log log(r)

)
⊆ Ω

(
1

log log(N)

)
,

where Ω(f(n)) denotes the set of functions g such that there is a constant C > 0, and n0 with ∀n > n0,
g(n) > Cf(n).

Proof: The order finding algorithm returns k
r for k ∈ {0, . . . , r−1} distributed uniformly at random. There

are φ(r) elements in {0, . . . , r − 1} that are coprime to r, and thefore, the probability of success is φ(r)/r.
The Euler function φ fluctuates a lot, but some very pessimistic bounds are known, including the fact that
there is a constant C > 0 such that φ(r)/r > C/log log(r). The second inequality in the result follows from
the fact that r ≤ φ(N) ≤ N .

11.2 Quantum factoring

Quantum factoring reduces to finding the order of an element modulo N , but with the essential restriction
that we do not know the order of the multiplicative group (Z/NZ)

∗
. This complicates things a little since

all we can do is work modulo 2n for a large enough n. Then instead of obtaining y
φ(N) = k

r for some k, we

get y
2n ≈

k
r , and if this approximation is good enough, then k

r is one of the convergents of the continued
fraction expansion of y

2n . So the main difficulty is to prove that we measure y such that y
2n is close enough

to a fraction of the form k
r with good probability.

Interestingly, the rest of the algorithm remains pretty much similar to what we have seen in the previous
section. We recap the main steps in order to properly introduce additional notations necessary due to the
fact that we do not know φ(N). Using H⊗n and c− Uxa , we produce the state

|ψ0〉 =
1√
2n

2n−1∑
x=0

|x〉 |ax mod N〉 .

This state can be re-written as

|ψ0〉 =

r−1∑
b=0

(
1√
2n

mb−1∑
z=0

|zr + b〉

)∣∣ab mod N
〉
,

where mb := |{z, | 0 ≤ zr + b < 2n}|=
⌊
2n−b−1

r

⌋
is the largest integer such that (mb − 1)r + b ≤ 2n − 1.

Then, we measure the second register (and discard it to obtain ab for some b ∈ {0, . . . , r − 1}. This leaves
the system in the following state

|ψ1〉 :=
1
√
mb

mb−1∑
z=0

|zr + b〉
∣∣ab mod N

〉
.

11-4 Lecture 11: Shor’s factoring algorithm

Then we apply QFT−12n to the first register that is in the state 1√
mb

∑mb−1
z=0 |zr + b〉, and thus obtain

QFT−12n√
mb

mb−1∑
z=0

|zr + b〉 =
1√

2n
√
mb

mb−1∑
z=0

2n−1∑
y=0

e−
2iπ(zr+b)y

2n |y〉

=
1√

2n
√
mb

2n−1∑
y=0

mb−1∑
z=0

e−
2iπ(zr+b)y

2n |y〉

=
1√

2n
√
mb

2n−1∑
y=0

e−
2iπby
2n

(
mb−1∑
z=0

e−
2iπzry

2n

)
|y〉

=
1√

2n
√
mb

2n−1∑
y=0

e−
2iπby
2n

(
mb−1∑
z=0

ζz

)
|y〉 ,

where ζ := e−
2iπry
2n . The probability of measuring a given y is

1

mb2n

∣∣∣∣∣
mb−1∑
z=0

ζz

∣∣∣∣∣
2

=
1

mb2n

∣∣∣∣ζmb − 1

ζ − 1

∣∣∣∣2 =
1

mb2n

∣∣∣∣ζmb/2 − ζmb/2ζ1/2 − ζ1/2

∣∣∣∣2 =
1

mb2n

∣∣∣∣∣ sin
(
πmbry

2n

)
sin
(
πry
2n

) ∣∣∣∣∣
2

Lemma 11.2 The probability of drawing y such that∣∣∣∣ x2n − k

r

∣∣∣∣ ≤ 1

2mbr

for some integer k is at least mb
2n

4
π2 .

Proof: We begin this proof by showing that if |θ|≤ π
2M , then 1

M2

sin2(Mθ)
sin2(θ)

≥ 4
π2 for any M . This is a direct

consequence of the fact that when |x|≤ π
2 , we have 2

π ≤
sin(x)
x (proof by direct analysis of the variations of

the function of the variable x). When used with x = Mθ this yields

1

M2

sin2(Mθ)

sin2(θ)
≥ 1

M2

4M2θ2

π2

1

sin2(θ)
≥ 1

M2

4M2θ2

π2

1

θ2
=

4

π2
.

Now we notice that for all k ∈ Z,

sin2
(πry

2n

)
= sin2

(πry
2n
− kπ

)
= sin2

(
πr

(
y

2n
− k

r

))
.

We define θ := πr
(
y
2n −

k
r

)
and M := mb. Since

∣∣ x
2n −

k
r

∣∣ ≤ 1
2mbr

, we have |θ|≤ π
2M , and therefore the

probability of measuring a given y satisfies

1

mb2n

∣∣∣∣∣ sin
(
πmbry

2n

)
sin
(
πry
2n

) ∣∣∣∣∣
2

=
1

mb2n
sin2(Mθ)

sin2(θ)
≥ 1

mb2n
4M2

π2
=

1

mb2n
4m2

b

π2
=
mb

2n
4

π2
.

The previous lemma shows us that if mb is large enough, then x
2n will be close to k

r , which will force the
latter to appear as a convergent in the continued fraction expansion of x

2n .

Lemma 11.3 If we choose n such that 2n ≥ 2r2, then necessarily mb ≥ r.

Lecture 11: Shor’s factoring algorithm 11-5

Proof: By definition, we have that mb := |{z, | 0 ≤ zr + b < 2n}|=
⌊
2n−b−1

r

⌋
. It can be re-written as

• mb = 2n−(2n mod r)
r + 1 if 0 ≤ b < 2n mod r,

• mb = 2n−(2n mod r)
r if 2n mod r ≤ b < r.

In each case, if 2n ≥ 2r2, mb ≥ 2r2−r
r ≥ r.

Proposition 11.4 (Probability of success) If 2n ≥ 2r2, then the probability p of success of Shor’s algo-
rithm satisfies

p ∈ Ω

(
1

log log(r)

)
⊆ Ω

(
1

log log(N)

)
.

Proof: We saw from the previous lemmas that whenever
∣∣ x
2n −

k
r

∣∣ ≤ 1
2mbr

, the probability of drawing x is

at least mb
2n

4
π2 . When 2n ≥ 2r2, we addtionally have that 1

2mbr
≤ 1

2r2 , which means that k
r appears in the

list of convergents of x
2n .

As we saw when finding orders in (Z/NZ)
∗
, there are φ(r) potential k ∈ {0, . . . , r − 1} that are coprime to

r (meaning that k/r yields r). For each of these k, there is a y ∈ {0, 2n − 1} such that
∣∣ x
2n −

k
r

∣∣ ≤ 1
2n+1 .

Therefore, the probability of drawing a y in the desired range is at least φ(r)mb2n
4
π2 . Now we have

mb

2n
≥ 1

t

2n = (2n mod r)

2n
≥ 1

r

2n − r
2n

≥ 1

r

2n − 2(n−1)/2

2n
≥ 1

r

(
1− 1

2(n+1)/2

)
≥ 2

r
.

This means that we draw a y in the desired range with probability at least φ(r)
r

2
π2 . As we previously saw

that φ(r)
r ∈ Ω(1/log log(r)), we can conclude that the probability of success is in Ω(1/log log(r)) as well.

So far, we have define “success” as the measurement of y such that the continued fraction expansion of y
2n

contains k
r for k coprime to r. We need however to be able to recognize the correct convergent.

Proposition 11.5 (Recognizing the right convergent) We have the following information about the
right convergent:

1. There can be at most one convergent ai
bi
6= x

2n satisfying
∣∣∣ x2n − ai

bi

∣∣∣ ≤ 1
2r2 and bi ≤ r.

2. If 2n ≥ 2r2 and
∣∣ x
2n −

k
r

∣∣ ≤ 1
2n , then ai

bi
= k

r will be the only convergent of x
2n with bi ≤ 2

(n−1)
2 and∣∣∣ x2n − ai

bi

∣∣∣ ≤ 1
2n .

Proof: 1. Assume that we have ai
bi

and
aj
bj

such that
∣∣∣ x2n − ai

bi

∣∣∣ ≤ 1
2r2 and

∣∣∣ x2n − aj
bj

∣∣∣ ≤ 1
2r2 with bi, b

′
i ≤ r.

Then by triangular inequality,
∣∣∣aibi − aj

bj

∣∣∣ ≤ 1
r2 . Without loss of generality, we can assume i < j and thus

bibj < b2j ≤ r2. This implies ∣∣∣∣aibi − aj
bj

∣∣∣∣ =

∣∣∣∣bjai − ajbibibj

∣∣∣∣ > ∣∣∣∣bjai − ajbir2

∣∣∣∣ .
Since

∣∣∣aibi − aj
bj

∣∣∣ ≤ 1
r2 , the only possibility is bjai − ajbi = 0, i.e. ai

bi
=

aj
bj

.

2. The proof is similar to that of 1. with 2r2 replaced by 2n.

11-6 Lecture 11: Shor’s factoring algorithm

In case 1. the issue is that we do not know r, therefore we could see multiple candidates for the right
convergent. From the proof of Proposition 11.4, we know that we are in the case 2. Therefore, for each
convergent ai

bi
, we can check how close it is from y

2n , and whether bi exceeds 2(n−1)/2. If we reach bj > 2(n−1)/2

without having found a convergent close enough to y
2n , then we declare a failure and try the algorithm again.

