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7.1 Quantum Computations are Reversible

In this course, we demonstrate the superiority of quantum computers over their classical counterpart for
certain well identified problems, in particular search problems and the factoring of large intergers. However,
we first need to address the following question: Are quantum computers at least as good as classical ones?
This may seem like a silly question when we seen all the hype surrounding quantum computers, but it is in
fact a very relevant question in light of a major constraint: quantum computations need to be reversible.
Note that here we assume no measurement is performed as part of the computation (this would not alleviate
our problem). Assume U ∈ C2n×2n is a unitary matrix representing a circuit on n qubits:

|x〉 U U |x〉

Then we necessarily have an inverse circuit that takes any U |x〉 back to |x〉, namely:

U |x〉 U† U†U |x〉 = |x〉

This restriction is anything but innocent. Indeed, a large proportion of the algorithms we want to be able
to perform are inherently not reversible

Example 1 For example, the following circuit (which we do not denote with the braket notation to avoid
fusion) is not reversible:

A

+

B A + B

Indeed, there is no way to retrieve A and B from A + B.

The above restriction raises two questions

• Can we turn non-reversible operations into reversible ones?

• What is the cost of such an operation?
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7.2 Using Ancillae Qubits

Turning a non-reversible operation into a reversible one is an easy task if we are willing to accept redundancy
of information. Indeed, it suffices to return extra information about the input to be sure that the reverse
path can be implemented. For example, the addition between two numbers can be made reversible if we
return one of the inputs:

A

+

A

B A + B

Since the question of reversibility is not an issue, we turn ourselves to the second issue: what is the cost of
making a computation reversible? This is a non-trivial question, and depending on the particular algorithm
we are trying to adapt, there might be optimizations possible, in particular in terms of additional memory
required. However, there is also a generic result from Bennett that gives estimates on on the extra resources
required.

Theorem 7.1 (Bennett) Let ε > 0. There is a generic technique to convert any algorithm taking time T
and space S into a reversible algorithm taking time T 1+ε and space O(S log(T )).

To interpret the above in terms of the cost functions we have defined, remember that the time T of a circuit
is its depth, while its width is the space S is the number of (qu)bits it requires. This means that we can
always hope to implement a classical function x 7→ C(x) (not necessarily reversible) by a quantum curcuit
of the formal

|x〉
U

|C(x)〉

|0〉⊗n |junk(x)〉

Here |junk(x)〉 denotes the extra information that is required in order for the operation to be reversible.
The extra qubits necessary that enter the circuit in the state |0〉⊗n and exit in the state |junk(x)〉 are called
ancilla qubits. In general, the junk qubits cannot be forgotten (or measured) because they are potentially
entangled with the answer C(x) of the classical calculation. They must be kept in memory until the end
of the computation. This restriction is particularly relevant when considering a superposition of |C(x)〉 for
many different x. If we somehow learn junk(x), then the state collapses to |C(x)〉 for the corresponding x.
It is usually preferable to “uncompute” the junk information in order to perform the following operation:

|x〉 |0〉⊗n UC−−−−→ |x〉 |C(x)〉 |0〉m ,

for some m ≤ n. This is done by using the previously seen CNOT gate, which is represented by the following
circuit

|a〉 |a〉

|b〉 |a⊕ b〉
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The CNOT gate allows us to copy C(x) qubit-by-qubit on a set of ancilla qubits, before the the “uncompu-
tation” with the action of U†.

|y〉 |y ⊕ C(x)〉

|x〉

U

|C(x)〉

U†

|x〉

|junk〉
|0〉⊗n |0〉⊗n

7.3 Converting Classical Universal Gate Sets

Having set the principles of ancilla qubit management, and knowing that all classical circuits can be turned
into a quantum one, we have one last task: checking that a given classical reversible circuit can be turned
into a quantum one. The input classical reversible circuit is given with respect to a universal set of classical
gates. There exist many of them, for example

• AND, OR, and NOT.

• AND and NOT.

• OR and NOT.

• NAND.

• NOR.

Then, we can turn a classical logical circuit into a quantum one by finding the quantum circuit that imple-
ments each logical gate in the universal set used to write the input classical circuit, and following the ancilla
management rules given above. Note that the CNOT quantum gate directly implemented the classical XOR
operation. The CNOT gate also does the NOT operation via

|1〉 |1〉

|x〉 |1⊕ x〉
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Finally, to do an AND operation, we introduce a very important gate: the Toffoli gate.

Definition 7.2 (Toffoli gate) The Toffoli gate is given by |x〉 |y〉 |z〉 7→ |x〉 |y〉 |z ⊕ xy〉 and is represented
by

|x〉 |x〉

|y〉 |y〉

|z〉 |z ⊕ xy〉

The Toffoli gate is not a part of of the Clifford + T + CNOT universal quantum gate set predominantly
used. However, it can be efficiently generated by Clifford + T + CNOT gates as shown in Figure 7.3.

Figure 7.1: Toffoli gate with Clifford + T + CNOT

The Toffoli gate implements the AND classical gate, thus completing the AND, OR, NOT gate set required
to synthesize any classical circuit.


