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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
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10.1 The quantum phase estimation problem

Definition 10.1 (Quantum phase estimation problem) Given the input state

|ψ〉 =
1√
2n

2n−1∑
y=0

e2iπωy |y〉 ,

compute the phase ω.

There are two different cases for this problem:

• ω = x
2n for some x ∈ Z.

• ω ∈ R arbitrary.

The former is easier to deal with than the latter. In this section, we focus on this easy case to introduce the
problem, and we defer to Section 10.4 for the case ω ∈ R. In the following, we denote by 0.x1x2 . . . xn−1 the
phase x

2n where x ∈ Z>0 is an n− 1-bit integer. We can always assume x < 2n, as otherwise the integer part
of x

2n factors out as a global phase. In the simplest case, the phase is of the form ω = 0.x1. This means that

|ψ〉 =
1√
2

(|0〉+ (−1)x1 |1〉) .

If we apply the 1-qubit Hadamard gate to |ψ〉, we get two possible outcomes depending on the value of
x1 ∈ {0, 1}:

• H√
2

(|0〉+ |1〉) = |0〉,

• H√
2

(|0〉 − |1〉) = |1〉.

In each case, we have that H |ψ〉 = |x1〉. Thus, after measuring the output qubit, we learn ω.

10.2 Controlled rotation gates

Our second example of the resolution of the phase estimation algorithm is when n = 2. In this case,
ω = 0.x1x2 and the input state is

|ψ〉 =
1

2

y=3∑
y=0

e2iπωy |y〉 =

(
|0〉+ 22πi(0.x2) |1〉√

2

)
︸ ︷︷ ︸

first qubit

⊗
(
|0〉+ 22πi(0.x1x2) |1〉√

2

)
︸ ︷︷ ︸

second qubit

.
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As before, the Hadamard gate on the first qubit, which is in the state |0〉+22πi(0.x2)|1〉√
2

directly yields |x2〉.
Then, to compute x1, we need to consider two cases

1. x2 = 0,

2. x2 = 1.

1) When x2 = 0, then second qubit is in the state |0〉+22πi(0.x1)|1〉√
2

. Therefore, applying a Hadamard gate

yields |x1〉.
2) When x2 = 1, we first apply the inverse of the rotation gate defined by

R2 :=

(
1 0

0 2
2πi
4

)
=

(
1 0
0 e2πi(0.01)

)
.

We can see that R−1
2

(
|0〉+22πi(0.x11)|1〉√

2

)
= |0〉+22πi(0.x1)|1〉√

2
. Then like in 1), the Hadamard gate yields the

state |x1〉. This is summarized in Figure 10.1

Figure 10.1: 2-qubit quantum phase estimation

The gate R2 is a special of a family of rotation gates that have the form

Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
= e−iθ/2

(
1 0
0 eiθ

)
In our case, R2 ∼ Rz(π/2) (remember that we use ∼ to denote the property “is equal modulo a global
phase”). We denote

Rk :=

(
1 0

0 e
2πi

2k

)
∼ Rz

(
2πi

2k

)
.

In general, rotation gates are not part of the Clifford+T gate set, but we know from the Solovay-Kitaev
theorem that we can approximate them with an ε precision by a product of Clifford + T gates of length
logc(1/ε) for some constant c > 0.

Example 1 (N. Ross 2014) Let S = T 4, and

Û = HTSHTSHTSHTHTHTHTSHTHTSHTSHTSHTHTHTSHTSHTHTHTSHTHTSHTHT

HTHTHTHTHTSHTSHTSHTHTSHTHTSHTHTHTHTSHTHTHTSHTHTSHTHTHTHTS

HTSHTSHTHTHTSHTSHTSHTSHTHTSHTSHTSHTSHTHTSHTHTSHTSHTHTHTHT

HTSHTHTHTHTSHTSHTSHTHTSHTSHTHTHTSHTHTHTHTHTSHTSHTHTHTHTHT

SHTHTHTHTSHTHTHTHTHTHTH

satisfies ‖Rz(π/128)− Û‖≤ 1
10−10 .
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10.3 The Quantum Fourier Transform (QFT)

The construction of Section 10.4 to solve the phase estimation problem in cases where ω = x
2n for arbitrary

n. We rely on the fact that

1√
2n

2n−1∑
y=0

|y〉 =

(
|0〉+ 22πi(0.xn) |1〉√

2

)
⊗
(
|0〉+ 22πi(0.xn−1xn) |1〉√

2

)
⊗ . . .⊗

(
|0〉+ 22πi(0.x1...xn) |1〉√

2

)

Example 2 (Case n = 3) The when ω = x/8, we can solve the phase estimation problem with the following
circuit:

The circuit that solves the phase estimation problem when ω = x/2n does the following operation:

1√
2n

2n−1∑
y=0

e
2iπxy
2n |y〉 7 −→ |x〉 .

Definition 10.2 (Quantum Fourier Transform (QFT)) The QFT circuit is the inverse of the circuit
that solves the phase estimation problem for ω = x/2n, i.e. it does:

|x〉 7 −→ 1√
2n

2n−1∑
y=0

e
2iπxy
2n |y〉 .

Figure 10.2: Quantum Fourier Transform circuit

Proposition 10.3 The action of the inverse of the QFT on basis states is given by

QFT−1
m : |x〉 7 −→ 1√

2n

2n−1∑
y=0

e−
2iπxy
2n |y〉 .

The notion of QFT can be extended to finite groups (in particular G = Z/NZ). The above would correspond
to G = Z/2nZ.
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10.4 Arbitrary phase estimation

In this section, we assume that ω is not necessarily of the form x
2n . For a given n, we want to find x ∈ Z

such that x
2n is the closest to ω. Our input state is |ψ〉 = 1√

2n

∑2n−1
y=0 e2iπωy |y〉, and the action of the inverse

of QFT2n is given by

QFT−1
2n |ψ〉 =

1

2n

2n−1∑
y=0

e2iπωy

(
2n−1∑
k=0

e
−2iπky

2n |k〉

)

=
1

2n

2n−1∑
y=0

2n−1∑
k=0

e
2iπ(x−k)y

2n e2iπδy |k〉 ,

where x = b2nωe is the nearest integer to 2nω and δ := ω − x
2n (which means that 0 ≤ |2nδ|≤ 1

2 ). Unless
otherwise stated, results regarding measurement probabilities after the action of QFT2m (or its inverse)
assume that controlled rotation gates are implemented with infinite precision. If needed, we can specify
the degree of precision to which QFT2m is implemented from the precision to which the rotations are
implemented.

Proposition 10.4 After applying QFT−1
2n to |ψ〉, the probability of measuring x = b2nωe is

• 1 if δ = 0.

• 1
22n

∣∣∣ 1−e2iπ2nδ

1−22iπδ

∣∣∣2 otherwise.

Proof: The probability of measuring x is

Pr(Measure x) =
∣∣〈x|QFT−1

2n |ψ〉
∣∣2 =

1

2n

∣∣∣∣∣
2n−1∑
y=0

22iπδy

∣∣∣∣∣
2

.

If δ = 0, this equals 1, otherwise, it is the sum of the first 2n consecutive terms of a geometric series of ratio
e2iπδ, hence the result.

Proposition 10.5 The probability of measuring x satisfies

Pr(Measure x) ≥ 4

π2

Proof: When δ 6= 0, we have that

Pr(Measure x) ==
1

22n

∣∣∣∣1− e2iπ2nδ

1− 22iπδ

∣∣∣∣2 =
1

22n

|sin(π2nδ)|2

|sin(πδ)|2
.

Moreover, |δ|≤ 1
2n+1 , therefore |2 · 2nδ|≤ |sin(π2nδ)| and

Pr(Measure x) ≥ 4

π2
≥ 1

2n
|2 · 2nδ|2

|πδ|2
=

4

π2
.
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Figure 10.3: Representation of ω on a circle

This procedure is illustrated in Figure 10.3. To accurately measure the probability of success of the phase
estimation algorithm, one needs to take into account the precision to which the controlled-rotations are
implemented. From the Solovay-Kitaev result, we know that we can efficiently implemented these gates to
an arbitrary degree of precision. Then, given this precision, we need to assess the precision of the resulting
approximate QFT over n bits.

Proposition 10.6 Let p be a polynomial and assume that the controlled rotation gates are implemented with

precision ε = 1
p(n) . We denote by QFTn the QFT over n bits and by Q̃FTn the approximation resulting from

the use of the approximate controlled rotations. Then we have

max
|ψ〉

∥∥∥(QFTn−Q̃FTn

)
|ψ〉
∥∥∥ ∈ O( n2

p(n)

)
.

Proof: As a homework assignment.

This means that if p(n) has degree at least 3, the resulting approximate QFT is asymptotically precise. This
result also applies to inverses.


