Lecture 3: Matrices

Lecturer: Jean-François Biasse
TA: Robert Hart

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

3.1 Basic Definitions

In this course, we focus our attention on matrices over \mathbb{C}. An m by n matrice over \mathbb{C} is give by n. m coefficients in \mathbb{C} ordered in an array:

$$
A=\left(\begin{array}{ccc}
a_{00} & \ldots & a_{0 n} \\
\vdots & \ddots & \vdots \\
a_{m 0} & \ldots & a_{m n}
\end{array}\right)
$$

We denote the space of m by n matrices over \mathbb{C} by $\mathbb{C}^{m \times n}$. They form a group for the addition law induced by the addition over \mathbb{C} :

$$
\left(\begin{array}{ccc}
a_{00} & \ldots & a_{0 n} \\
\vdots & \ddots & \vdots \\
a_{m 0} & \ldots & a_{m n}
\end{array}\right)+\left(\begin{array}{ccc}
b_{00} & \ldots & b_{0 n} \\
\vdots & \ddots & \vdots \\
b_{m 0} & \ldots & b_{m n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{00}+b_{00} & \ldots & a_{0 n}+b_{0 n} \\
\vdots & \ddots & \vdots \\
a_{m 0}+b_{m n} & \ldots & a_{m n}+b_{m n}
\end{array}\right)
$$

We can also define the multiplication of two matrices, but unlike the above, this is not a straightforward generalization of the same law on complex numbers applied coefficient-wise. First of all, a multiplication can only occur between a matrix $A \in \mathbb{C}^{m \times n}$ and a matrix $B \in \mathbb{C}^{n \times k}$. Then, the multiplication of two matrices is given by the following formula:

$$
\begin{aligned}
A B & =\left(\begin{array}{ccc}
a_{00} & \ldots & a_{0 n} \\
\vdots & \ddots & \vdots \\
b_{m 0} & \ldots & b_{m n}
\end{array}\right)\left(\begin{array}{ccc}
b_{00} & \ldots & b_{0 k} \\
\vdots & \ddots & \vdots \\
b_{n 0} & \ldots & b_{n k}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
a_{00} b_{00}+\ldots+a_{0 n} b_{n 0} & \ldots & a_{00} b_{0 k}+\ldots+a_{0 n} b_{n k} \\
\vdots & \ddots & \vdots \\
a_{m 0} b_{00}+\ldots+a_{m n} b_{n 0} & \ldots & a_{m 0} b_{0 k}+\ldots+a_{m n} b_{n k}
\end{array}\right) \in \mathbb{C}^{m \times k}
\end{aligned}
$$

Example 1 Let us consider the matrices

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 2 \\
0 & 0 \\
1 & 0
\end{array}\right)
$$

The multiplication between A and B is given by

$$
\begin{aligned}
A B & =\left(\begin{array}{ll}
1 \times 1+1 \times 0+1 \times 1 & 1 \times 2+1 \times 0+1 \times 0 \\
0 \times 1+1 \times 0+0 \times 1 & 0 \times 2+1 \times 0+0 \times 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Row vectors (kets) in \mathbb{C}^{n} can be seen as matrices in $\mathbb{C}^{n \times 1}$ while column vectors can be seen as matrices in $\mathbb{C}^{1 \times n}$. Multiplication between vectors and matrices can therefore be performed by simply following the matrix-matrix multiplication rule:

$$
A|\mathbf{v}\rangle=\left(\begin{array}{ccc}
a_{00} & \ldots & a_{0 n} \\
\vdots & \ddots & \vdots \\
a_{m 0} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
v_{0} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{00} v_{0} & \ldots & a_{0 n} v_{n} \\
\vdots & \ddots & \vdots \\
a_{m 0} v_{0} & \ldots & a_{m n} v_{n}
\end{array}\right)
$$

Example 2 Let us define

$$
|\boldsymbol{v}\rangle=\binom{0}{1} \quad A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Then the matrix-vector product is

$$
A|\boldsymbol{v}\rangle=\binom{1 \times 0+1 \times 1}{1 \times 0+1 \times 1}=\binom{1}{1}
$$

3.2 Outer product

Inner products can be viewed as a matrix mutiplication between a bra and a ket which results in a matrix in $\mathbb{C}^{1 \times 1}$, that is: identified by a single coefficient in \mathbb{C}. Likewise, the multiplication between a ket and a bra also result in a matrix, which has interesting properties.

Definition 3.1 (Outer product) Let $|\boldsymbol{x}\rangle$ and $|\boldsymbol{y}\rangle$ be two vectors in \mathbb{C}^{n}, the outer product between them is defined by

$$
|x\rangle\langle y|=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)\left(\begin{array}{lll}
y_{1}^{*} & \ldots & y_{n}^{*}
\end{array}\right)=\left(\begin{array}{ccc}
x_{1} y_{1}^{*} & \ldots & x_{1} y_{n}^{*} \\
\vdots & \ddots & \vdots \\
x_{n} y_{1}^{*} & \ldots & x_{n} y_{n}^{*}
\end{array}\right) .
$$

Example 3 Here are a couple of examples of outer products in the Dirac notation:

$$
\begin{aligned}
|0\rangle\langle 0| & =\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 \times 1 & 0 \times 1 \\
1 \times 0 & 0 \times 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \\
|1\rangle\langle 0| & =\binom{0}{1}\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 \times 1 & 0 \times 1 \\
1 \times 1 & 0 \times 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

The above example suggests a pattern for the outer multiplication between vectors of the canonical basis.

Proposition 3.2 Let $n>1$, for all $0 \leq i, j \leq n-1$, we have

$$
|i\rangle\langle j|=M^{i, j} \in \mathbb{C}^{n \times n}
$$

where the coefficients of $M^{i, j}$ are given by

- $M_{k, l}^{i, j}=1$ if $k=i$ and $l=j$.
- $M_{k, l}^{i, j}=0$ otherwise.

For example, the matrix with ones on the diagonal and zeros everywhere else (known as the identity matrix) is given by $I_{n}=\sum_{i<n}|i\rangle\langle i|$.

3.3 Projectors

Let $\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{k}\right\rangle$ be an orthonormal family of vectors of \mathbb{C}^{n} for $0<k<n$. Let $V \subseteq \mathbb{C}^{n}$ be the k-dimensional vectors space spanned by the family $\left(\left|\psi_{i}\right\rangle\right)_{i \leq k}$, and let V^{\perp} its orthogonal complement, i.e.

$$
V^{\perp}:=\left\{|\phi\rangle \in \mathbb{C}^{n} \text { such that } \forall i \leq k \text { we have }\left\langle\psi_{i} \mid \phi\right\rangle=0\right\}
$$

Then we can decompose \mathbb{C}^{n} as the direct sum between V and V^{\perp}, that is:
Proposition 3.3 For each $|\boldsymbol{x}\rangle \in \mathbb{C}^{n}$, there exist a unique pair $\left|\boldsymbol{x}_{1}\right\rangle \in V$ and $\left|\boldsymbol{x}_{2}\right\rangle$ such that $|\boldsymbol{x}\rangle=\left|\boldsymbol{x}_{1}\right\rangle+\left|\boldsymbol{x}_{2}\right\rangle$. We denote this property by

$$
\mathbb{C}^{n}=V \oplus V^{\perp}
$$

There is a linear operator P_{V} that returns the summand belonging to V, which we call the projection onto V :

$$
P_{V}:|\mathbf{x}\rangle \in \mathbb{C}^{n}, \longrightarrow\left|\mathbf{x}_{1}\right\rangle \in V \text { where }|\mathbf{x}\rangle=\left|\mathbf{x}_{1}\right\rangle+\left|\mathbf{x}_{2}\right\rangle \text { with }\left|\mathbf{x}_{2}\right\rangle \in V^{\perp}
$$

As we previously saw with inner products, the decomposition of $\left|\mathbf{x}_{1}\right\rangle$ with respect to the othonormal family of vectors $\left(\left|\psi_{i}\right\rangle\right)_{i \leq k}$ is given by the coefficiens $\left\langle\psi_{i} \mid \mathbf{x}_{1}\right\rangle$. Since $\left|\mathbf{x}_{2}\right\rangle \in V^{\perp}$, these coefficients are also equal to $\left\langle\psi_{i} \mid \mathbf{x}_{1}+\mathbf{x}_{2}\right\rangle=\left\langle\bar{\psi}_{i} \mid \mathbf{x}\right\rangle$. Hence, we can give the following expression for the projection onto V :

$$
P_{V}=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\ldots+\left|\psi_{k}\right\rangle\left\langle\psi_{k}\right|
$$

Example 4 Let $\left|\psi_{1}\right\rangle=|0\rangle \in \mathbb{C}^{2}$ and $V=\operatorname{Span}\left(\left|\psi_{1}\right\rangle\right)$. Then $P_{V}=|0\rangle\langle 0|$, and for all $|\boldsymbol{x}\rangle=x_{0}|0\rangle+x_{1}|1\rangle$ we have

$$
P_{V}|\boldsymbol{x}\rangle=|0\rangle\langle 0|\left(x_{0}|0\rangle+x_{1}|1\rangle\right)=x_{0}|0\rangle\langle 0 \mid 0\rangle+x_{1}|0\rangle\langle 0 \mid 1\rangle=x_{0}|0\rangle .
$$

Example 5 Let

- $\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \in \mathbb{C}^{4}$,
- $\left|\psi_{2}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) \in \mathbb{C}^{4}$,
- and $V=\operatorname{Span}\left(\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle\right)$.

Then $P_{V}=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|$ and for all $|x\rangle=x_{0}|0\rangle+x_{1}|1\rangle+x_{2}|2\rangle+x_{3}|3\rangle$ we have

$$
\begin{aligned}
P_{V}|\boldsymbol{x}\rangle & =\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|\left(x_{0}|0\rangle+x_{1}|1\rangle+x_{2}|2\rangle+x_{3}|3\rangle\right)+\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|\left(x_{0}|0\rangle+x_{1}|1\rangle+x_{2}|2\rangle+x_{3}|3\rangle\right) \\
& =\left(\frac{x_{1}}{\sqrt{2}}+\frac{x_{2}}{\sqrt{2}}\right)\left|\psi_{1}\right\rangle+\left(\frac{x_{1}}{\sqrt{2}}-\frac{x_{2}}{\sqrt{2}}\right)\left|\psi_{2}\right\rangle \\
& =x_{0}|0\rangle+x_{1}|1\rangle
\end{aligned}
$$

3.4 Unitary matrices

We say that a matrix $A \in \mathbb{C}^{n \times n}$ is invertible if there exists a matrix $A^{-1} \mathbb{C}^{n \times n}$ such that

$$
A A^{-1}=A^{-1} A=I_{n}=|0\rangle\langle 0|+|1\rangle\langle 1|+\ldots+|n-1\rangle\langle n-1| .
$$

The matrix $I_{n}=\sum_{i}|i\rangle\langle i| \in \mathbb{C}^{n \times n}$ is called the identity matrix as it is an identity for the multiplication law.

Proposition 3.4 A matrix $A \in \mathbb{C}^{n \times n}$ is inversible if and only if $\operatorname{det}(A) \neq 0$.

A linear operator A has a unique adjoint, or Hermitian conjugate that satisfies the following property:

$$
\forall\left|\mathbf{x}_{1}\right\rangle,\left|\mathbf{x}_{2}\right\rangle \in \mathbb{C}^{n},\left\langle\mathbf{x}_{1}\right|\left(A\left|\mathbf{x}_{2}\right\rangle\right)=\left\langle\mathbf{y}_{1} \mid \mathbf{x}_{2}\right\rangle \text { for }\left|\mathbf{y}_{1}\right\rangle=A^{\dagger}\left|\mathbf{x}_{1}\right\rangle
$$

Proposition 3.5 The matrix corresponding to the adjoint of the linear operator represented by A is the conjugate of the transpose of A, that is $A^{\dagger}=\left(A^{T}\right)^{*}$.

Definition 3.6 (Unitary matrix) A matrix $U \in \mathbb{C}^{n \times n}$ is said to be unitary if it has the property that

$$
U U^{\dagger}=U^{\dagger} U=I_{n}
$$

Unitary matrices play an important role in quantum computing as they represent the evolution of a closed quantum system.

Example 6 A typical example of unitary matrices is the Pauli Matrices which are defined by

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

