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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

In this lecture, we focus on Grover’s algorithm, and its generalization the quantum amplification strategy.
The idea is that we are looking for one of M marked elements inside a set of N > M elements. The marked
elements x ∈ {1, . . . , N} satisfy f(x) = 1 for some function f . If we do not assume any particular structure
(such as an ordering of the elements for example), then on the worst case scenario, a classical algorithm
would need to evaluate f at N −M elements before finding the correct one. On average, N/M elements
could suffice. With a quantum computer however, we can get away with evaluating f only

√
M/N time on

average. Like the Deutsch-Jozsa algorithm, this result demonstrate the superiority of quantum computers
over their classical counterpart for certain comptutational tasks.

9.1 Grover’s search method

Grover’s search algorithm starts with the state |0〉⊗n, and after applying H⊗n, we obtain the state

|ψ〉 :=
1√
N

∑
x

|x〉 .

A measurement on the system in the sate |ψ〉 would yield a marked element with probability M/N . Grover’s
algorithm proposes to perform a series of computations aiming to raise the amplitude of the |x〉 for x a
marked element while reducing all the other ones. At the end of the procedure, a measurement will likely
yield a marked element. For this, we need a circuit that evaluates f . More specifically, we need to implement
the circuit

|x〉
Of

(−1)f(x) |x〉

|0〉m |0〉m

We call this circuit the “oracle”. A typical use case is when we know an efficient classical algorithm for f .
Then using the methods previously seen, we can efficiently implement Of . The other essential ingredient is
a conditional phase shift circuit called Oφ that realizes the following transformation

Oφ |0〉 = |0〉 , and Oφ |x〉 = − |x〉 for x 6= 0.

Grover’s algorithm is the repetition of an elementary step involving Of and Oφ that we call the “Grover
iterate”. It can be represented like this

|x〉i
G

|x〉i+1

|0〉m |0〉m
=

|x〉i
Of

H⊗n Oφ H⊗n |x〉i+1

|0〉m |0〉m
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Proposition 9.1 The action of H⊗nOφH⊗n is the linear operator 2 |ψ〉 〈ψ| − I, and the Grover operators
is

G = (2 |ψ〉 〈ψ| − I)Of .

Proof: The conditional phase shift acts as 2 |0〉 〈0| − I. Then by substituting it in H⊗nOφH⊗n we get

H⊗nOφH⊗n = H⊗n2 |0〉 〈0| − I)(H⊗n

= (2H⊗n |0〉 〈0| −H⊗n)H⊗n

= 2H⊗n |0〉 〈0|H⊗n −H⊗nH⊗n

= 2 |ψ〉 〈ψ| − I since H⊗nH⊗n = I and H⊗n |0〉 = |ψ〉

The result on G follows since the Grover iterate is the composition of Of with the above block.

Proposition 9.2 The operator 2 |ψ〉 〈ψ| − I realizes the following operation∑
x

αx |x〉 7 −→
∑
x

(−αx + 2〈α〉) |x〉 ,

where 〈α〉 := 1
N

∑
x αx. We call this operation the inversion about the mean.

Proof: We have the following identities

(2 |ψ〉 〈ψ| − I)

(∑
x

αx |x〉

)
= 2 |ψ〉 〈ψ|

(∑
x

αx |x〉

)
−
∑
x

αx |x〉

= 2 |ψ〉
∑
x

αx 〈ψ|x〉 −
∑
x

αx |x〉

= 2 |ψ〉
∑
x

(
1√
N

∑
x

αx

)
−
∑
x

αx |x〉

= 2〈α〉
√
N |ψ〉 −

∑
x

αx |x〉

= 2〈α〉
∑
x

|x〉 −
∑
x

αx |x〉

There is an elegant interpretation of the action of the Grover iterate that helps quantifying how many
interations are required to ensure the optimum probability of measuring a marked element. Let S ⊆ {1, . . . N}
be the set of marked elements of cardinality |S|= M < N . Additionally, we define the states

|α〉 =
1√

N −M

∑
x/∈S

|x〉 and |β〉 =
1√
M

∑
x∈S
|x〉

We clearly see that |α〉 ⊥ |β〉, and that

|ψ〉 =

√
N −M
N

|α〉+

√
M

N
|β〉

Proposition 9.3 The Grover iterate G acts on Span{|α〉 , |β〉} as

G =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,
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where θ is defined by cos(θ/2) =
√

N−M
N and sin(θ/2) =

√
M
N . This means that G acts as a rotation of angle

θ.

Proof: Let us evaluate the action of the Grover iterate on |α〉.

G |α〉 =
G√

N −M

∑
x/∈S

|x〉

= (2 |ψ〉 〈ψ| − I)
1√

N −M

∑
x/∈S

|x〉

=
2√

N −M
|ψ〉 〈ψ|

∑
x/∈S

|x〉 − 1√
N −M

∑
x/∈S

|x〉

=
2√

N
√
N −M

|ψ〉
∑
x/∈S

1− 1√
N −M

∑
x/∈S

|x〉

=
2
√
N −M
N

∑
x

|x〉 − 1√
N −M

∑
x/∈S

|x〉

=
2
√
N −M
N

∑
x∈S
|x〉+

(
2
√
N −M
N

− 1√
N −M

)∑
x/∈S

|x〉

=
2
√
M
√
N −M
N︸ ︷︷ ︸

sin(θ)

1√
M

∑
x∈S
|x〉︸ ︷︷ ︸

|β〉

+
2(N −M)

N
− 1︸ ︷︷ ︸

cos(θ)

1√
N −M

∑
x/∈S

|x〉︸ ︷︷ ︸
|α〉

.

Thus G |α〉 = cos(θ) |α〉 + sin(θ) |β〉. Likewise, we can prove that G |β〉 = − sin(θ) |α〉 + cos(θ) |β〉, which
shows that G acts like a rotation of angle θ.

Since we start with the state |ψ〉 = cos(θ/2) |α〉+ sin(θ/2) |β〉, the state we reach after k iterations is

Gk |ψ〉 = cos

(
2k + 1

2
θ

)
|α〉+ sin

(
2k + 1

2
θ

)
|β〉 .

To maximize our chances to measure an element in S, we want that 2k+1
2 θ ≈ π

2 . This leads us to choose
k =

⌊
π
2θ −

1
2

⌉
where bxe denotes the rounding of x to the nearest integer. In particular, this means that∣∣∣∣2k + 1

2
θ − π

2

∣∣∣∣ ≤ θ ∣∣∣∣k − ( π

2θ
− 1

2

)∣∣∣∣ ≤ θ

2
.

When we assume that M ≤ N/2, we can choose θ ∈ [0, π/2], and therefore, 0 ≤ θ/2 ≤ π/4, and we have
√

2

2
≤ sin

(
2k + 1

2
θ

)
≤ 1.

Proposition 9.4 Assuming that M ≤ N/2, a measurement of the state after k ≤
⌈
π
4

√
N
M

⌉
yields x ∈ S

with probability at least 1
2 .

Proof: We have seen that after k =
⌊
π
2θ −

1
2

⌉
a projective measurement with respect to |β〉 leaves the system

in the state |β〉 (a superposition of all solutions) with probability

sin2

(
2k + 1

2
θ

)
≥ 1

2
.
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Since we have

θ

2
≥ sin

(
θ

2

)
=

√
M

N
,

we can conclude that k =
⌊
π
2θ −

1
2

⌉
≤
⌈
π
4

√
N
M

⌉
.

9.2 Amplitude amplification

Grover’s search algorithm can be viewed as a special case of a more general family of search algorithm:
amplitude amplification algorithms. These algorithms assume the knowledge of an algorithm A that produces
a superposition over all possible outcomes with certain weights

A |0〉⊗n =
∑
x<N

αx |x〉 |junk(x)〉 = |ψ〉 .

In the case of Grover’s algorithm, A = H⊗n, but in general, the measurement of |ψ〉 yields x ∈ S with
probability

1 > p =
∑
x∈S
|αx|2> 0

that is not necessarily M/N (it is hopefully better than that, otherwise we can Grover’s algorithm). We
define the states

|α〉 =
1√

1− p
∑
x/∈S

αx |x〉 |junk(x)〉 and |β〉 =
1
√
p

∑
x∈S

αx |x〉 |junk(x)〉

We clearly see that |α〉 ⊥ |β〉, and that

|ψ〉 =
√

1− p |α〉+
√
p |β〉

We define the search iteration as

|x〉i
Q

|x〉i+1

|0〉m |0〉m
=

|x〉i
Of

A† Oφ A |x〉i+1

|0〉m |0〉m

where the states |x〉i include the qubits necessary to hold the junk space. Similarly to the Grover iterate,
we have the following result with the new notations.

Proposition 9.5 The action of AOφA† is the linear operator 2 |ψ〉 〈ψ| − I, and the amplitude amplification
iterate is

Q = (2 |ψ〉 〈ψ| − I)Of .

Still following the analogy with the Grover search method, we can view the amplitude amplification as a
rotation.
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Proposition 9.6 The amplitude amplification iterate Q acts on Span{|α〉 , |β〉} as

G =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,

where θ is defined by cos(θ/2) =
√

1− p and sin(θ/2) =
√
p. This means that Q acts as a rotation of angle

θ.

Since we start with the state |ψ〉 = cos(θ/2) |α〉+ sin(θ/2) |β〉, the state we reach after k iterations is

Qk |ψ〉 = cos

(
2k + 1

2
θ

)
|α〉+ sin

(
2k + 1

2
θ

)
|β〉 .

As before, the probability of measuring x ∈ S at the end of the procedure is sin
(
2k+1

2 θ
)2

. We perform the

minimum number of iterations k such that sin
(
2k+1

2 θ
)
≈ sin(π/2). Following the same arguments as before,

we get the following bound on the number of iterations required.

Proposition 9.7 Assuming that p ≤ 1/2, a measurement of the state after k ≤
⌈
π
4

√
p
⌉

yields x ∈ S with
probability at least 1

2 .

This means that amplitude amplification uses an algorithm that would take O(1/p) steps to return x ∈ S
with probability 1/2 as a subroutine of another algorithm that only O(1/

√
p) steps to return x ∈ S with

probability 1/2. This generalizes Grover’s algorithm that uses the uniform superposition of all x < N , which
takes O(M/N) attempts through measurements to return x ∈ S as a subroutine of a procedure that only

takes O
(√

M
N

)
steps.


