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2.1 Complex vector spaces

Vectors x of the vector space Cn are n-tuple (x1, . . . , xn) ∈ Cn satisfying the following conditions:x1...
xn

+

y1...
yn

 =

x1 + y1
...

xn + yn

 and ∀c ∈ C, c

x1...
xn

 =

cx1...
cxn

 .

Definition 2.1 (Basis of Cn) A set of vectors v1, · · · , vn of Cn is a basis if

∀x ∈ Cn ∃! (λ1, . . . , λn), x =
∑
i

λivi

It can be proved that a basis of Cn has always n vectors. There are infinitely many ways to create a basis
of Cn, and changes of bases will have of particular importance in quantum algorithms. There is however a
basis that is especially important to us, namely the canonical basis.

Definition 2.2 (Canonical basis) The canonical basis of Cn is the set of vectors e1, . . . , en defined by

e1 =


1
0
...
0

 , e2 =


0
1
0
...

 , . . . , en =


0
...
0
1

 .

In the following, we will keep the notation (ei)i≤n to describe the canonical basis of Cn when there is no
ambiguity. Note that we always have (x1, . . . , xn) =

∑
i xiei.

2.2 The Dirac notation

Thoughout this course, we will be using the so-called Dirac notation. This notation introduced by Dirac is
prominent in quantum science. It is therefore really important to be familiar with it in quantum computing.

Definition 2.3 (Complex conjugate) Let c = a + ib ∈ C for a, b ∈ R be a complex number. We denote
by c∗ its complex conjugate, which is defined as

c∗ = a− ib.
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The Dirac notation is also called the “Bra-ket” notation because is is in fact a notation for two different
things: rwo vectors which are bra and column vectors that are kets.

Definition 2.4 (Bra-ket notation) Let x = (x1, . . . , xn) ∈ Cn be an n-tuple of complex numbers. We
define the following complex vectors:

• The bra associated to x is 〈x|=
(
x∗1 . . . x∗n

)
.

• The ket associated to x is |x〉 =

x1...
xn


Notice the complex conjugation in the bra. This will be important in the inner product defined in Section 2.3.
Before moving on to actual calculations involving vectors in the Dirac notation, we introduce a special
notation for the canonical basis which we will re-use extensively in this course.

Definition 2.5 (Canonical basis in Dirac notation) Let (ei)i≤n be the canonical basis of Cn. We de-
fine

|i〉 = ei.

Example 1 Here are a few examples of canonical basis vectors in the Dirac notation. Note that it is
important to specify the ambiant vector space (i.e. which n we are working with).

• |0〉 ∈ C2 corresponds to

(
1
0

)
.

• |0〉 ∈ C4 corresponds to


1
0
0
0

.

• |3〉 ∈ C4 corresponds to


0
0
1
0

.

Notice that counter-intuitively, |0〉 is not the zero vector!

2.3 Inner product

The inner product in Cn is the Hermitian form defined by

〈x|y〉 =
(
x∗1 . . . x∗n

)y1...
yn

 =

n∑
i=1

x∗i yi.

Example 2 Here are a few examples of inner products:
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• 〈3, 2, 1|1, 2, 3〉 = 3× 1 + 2× 2 + 1× 3 = 10.

• 〈3, 2, 1|1, 2i, 3〉 = 3× 1 + 2× 2i+ 1× 3 = 6 + 4i.

• 〈3, 2i, 1|1, 2, 3〉 = 3× 1− 2i× 2 + 1× 3 = 6− 4i.

• For i ∈ Z≥0, 〈i|i〉 = 1.

• For i 6= j ∈ Z≥0, 〈i|j〉 = 0.

Proposition 2.6 For all |ψ〉 ∈ Cn, we have 〈ψ|ψ〉 ≥ 0, and the function

|ψ〉 7 −→
√
〈ψ|ψ〉 := ‖〈ψ|‖

is a norm that generalizes the Euclidean norm in Rn.

Proof: Let (xi)i≤n ∈ Cn. Then we have

〈x1, . . . , xn|x1, . . . , xn〉 =
∑
i

x∗i xi =
∑
i

|xi|2.

Necessarily, 〈x1, . . . , xn|x1, . . . , xn〉 ≥ 0. Moreover, we have the additional properties that make this function
a norm:

•
∑

i|xi|2= 0⇔ xi = 0 ∀i⇔ x = 0.

• ∀λ ∈ C,
√∑

i|λxi|2 =
√
|λ|2

√∑
i|xi|2 = |λ|

√
〈x|x〉.

2.4 Orthonormal bases

Orthonormal bases play a crucial role in quantum science. As we will see later in this course, they represent
observables, i.e. values that can be measured. Therefore, we will need to casually perform calculations that
use the unique properties of orthonormal bases.

Definition 2.7 (Orthonormal family) We say that |ψ1〉, . . . , |ψk〉 ∈ Cn is an orthonormal family of vec-
tors if:

• ∀i ≤ k, 〈ψk|ψk〉 = 1.

• ∀i 6= j, 〈ψi|ψj〉 = 0.

Example 3 The canonical basis (|i〉)i≤n ∈ Cn is an orthonormal family of vectors in Cn.

We mention a couple of important properties:

Proposition 2.8 The following properties hold:
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• An orthonormal family of vectors |ψ1〉, . . . , |ψk〉 ∈ Cn is always linearly independant.

• If an orthnormal family of Cn has n element, then it is a basis which we denote an orthonormal basis.

Orthonormality is very convenienient when it comes to decompose an input vector in the span of the family
(a case of particular interest is when we consider orthonormal bases of course).

Proposition 2.9 Let |ψ1〉, . . . , |ψk〉 ∈ Cn be an orthonormal family. If |psi〉 =
∑

i λi|ψi〉, then necessarily

λ1 = 〈ψ1|ψ〉, λ2 = 〈ψ2|ψ〉, . . . , λn = 〈ψn|ψ〉.

Proof:
∀i ≤ k, 〈ψi|ψ〉 = 〈ψi|

∑
j

λjψj〉 =
∑
j

λj 〈ψi|ψj〉︸ ︷︷ ︸
0 if i 6=j

= λi.

Example 4 Let us consider the vectors

|ψ1〉 =
1√
2

(|0〉+ |1〉) , |ψ2〉 =
1√
2

(|0〉 − |1〉) .

As an exercise, verify that |ψ1〉, |ψ2〉 is an orthonormal basis of C2. Then, we observe that

• 〈1|ψ1〉 = 1√
2

• 〈1|ψ2〉 = −1√
2

Thus, we conclude that |1〉 = 1√
2

(|ψ1〉 − |ψ2〉).

Finally, we mention that any linearly independant family of vectors can be turned into an orthonormal family
via the Gram-Schmidt orthogonalization process.

Definition 2.10 (Gram-Schmidt process) Let |ψ1〉, . . . , |ψk〉 ∈ Cn be linearly independent vectors. The
Gram-Schmidt process consists in the following steps:

|u1〉 = |ψ1〉, |v1〉 =
|u1〉
〈u1|u1〉

|u2〉 = |ψ2〉 − 〈v1|ψ2〉|v1〉, |v2〉 =
|u2〉
〈u2|u2〉

|u3〉 = |ψ3〉 − 〈v1|ψ3〉|v1〉 − 〈v2|ψ3〉|v2〉, |v3〉 =
|u3〉
〈u3|u3〉

...

|uk〉 = |ψk〉 −
∑
i<k

〈vi|ψk〉|vi〉, |vk〉 =
|uk〉
〈uk|uk〉

Proposition 2.11 The family created during the Gram-Schmidt process is orthonormal and is a basis of the
span of |ψ1〉, . . . , |ψk〉.
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Proof: By induction, it is clear that each |vi〉 is in the span of |ψ1〉, . . . , |ψk〉. Likewise, it is clear that
they all have norm 1. If we can prove that 〈vi|vj〉 = 0 for i 6= j, then this would imply that they are an
orthonormal family, thus linearly independant, which mean they are a basis of the span of |ψ1〉, . . . , |ψk〉.

To prove that 〈vi|vj〉 = 0 for i 6= j, we fist notice that

∀1 < j ≤ k, |uj〉 = |ψj〉 −
∑
l<j

〈vl|ψj〉|vl〉.

Then we prove by induction on j ≤ k that the (|vi〉)i≤j are an orthonormal family. By linearity of the inner
product, we have

∀i < j, 〈vi|uj〉 = 〈vi|ψj〉 −
∑
l<j

〈vl|ψj〉 〈vi|vl〉︸ ︷︷ ︸
0 if l 6=i by induction

= 〈vi|ψj〉 − 〈vi|ψj〉 = 0.


