MAT 4930: Quantum Algorithms and Complexity Spring 2021

Lecture 8: The Deutsch-Jozsa Algorithm
Lecturer: Jean-Frangois Biasse TA: Robert Hart

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the Instructor.

The Deutsch-Jozsa algorithm is our first example of an algorithm that achieves an exponential speed-up over
classical ones. In other words, this means that there is no constant k£ > 0 such that

COStclassical(S) €O (COStquantum(S)k))

where S is the input size of the problem, and Costcassical (S) is the cost of solving the problem with a classical
computer while O (Costquantum(S)k) is the cost solving it with a quantum one. The problem to be solve
(which has little practical use), consists in deciding whether an input function f : {0,1}™ — {0, 1} is either
constant or balanced (returns 0 on half the inputs, and 1 on the other half). Here, the cost will is measured
as the number of evaluations of a circuit that implements f. The quantum Deutsch-Jozsa solution to the
problem as the astonishing property to require only one evaluation of the quantum circuit implementing f.

8.1 Uniform superposition with Hadamard gates

While the Deutsch-Jozsa does not directly solve a search problem per se, it uses one of the main ingredients
of Grover’s algorithm that will be introduced later in this course: namely the creation of the uniform
superposition of elements.

Definition 8.1 (Uniform superposition) Let n > 1 and S C {0,...,2" — 1}. The n-qubit state that is
the superposition of all elements of S is

1
|¢>—ﬁ2|x>a

zeS

where |S| denote the cardinality of S.

Proposition 8.2 Letn > 1 and S C {0,...,2" —1}. The measurement of the state that is the superposition
of all elements of S yields any given x € S with probability 1/|S]|.

Proof: We have that the state is decomposed as

|w>:zamx>=zj|§||x>.

zeS zeS

Hence we measure = with probability |a,|?= 1/|S]. [|

It is generally admitted that we can prepare the input state to a quantum algorithm in one of the basis
states, typically |O>®". However, it is not necessarily straightforward to create a uniform superposition over

8-1

8-2 Lecture 8: The Deutsch-Jozsa Algorithm

a given set S. Here, we focus on the case where S = {0,...,n — 1}. This means that we’d like to create the
state 1
) =—= > |o)
2n 2™

Such a state has the property that we measure any canonical basis vector label with uniform probability.
Now, remember how the Hadamard gate acts on |0):

H|O>:%|0>+%|l> WhereH:\}i(i _11>

Hence, the Hadamard gate produces the uniform superposition of all 1-qubit states. Let’s see what happens
on 2 qubits.

H®?|0)** = H ® H(|0) ® |0))
= (H0)) ® (H [0))
1

1 1 1
(\/5 '0”@”) “ (\/5|0>+\/§1>>
%(I0> ®10) +0) @ [1) + 1) @ |0) + [1) @ [1))

s (5m)

This means that we have realized the uniform superposition over 2 qubits with the Hadamard gate tensored
with itsef. Could this fact be generalized to n qubits? The answer is yes.

Proposition 8.3 Let n > 1, the following always hold:

n n]'
H®™ [0)®" = P >).

r2m

Proof: We could prove this by directly expanding the product (and being comfortable with large products),
but this is perhaps even easier to see by induction. We already showed that the property was true for
n =1,2. Assume that that for some n > 1, we have H®" |0)*" = 5775 2op<an [2) - Then we have

H®n+1) \O>®("+1) = (H®" ® H) |O>®n)®|0>
= (H®"[0)°") @ (H |0))

1 1 . .
= <2n/2 Z |x>> ® (\/§(|0> + |1>)> by induction

2
1 1
= S0z > |2) ©10) + SrrrE > Iz @)
2™ r<2n
1 1
= ooz 2) toemne 2. @)
2™ E(C;"Jrl 2n < pontl
1
= s O 1)
:L’<2“+1

Lecture 8: The Deutsch-Jozsa Algorithm 8-3

Proposition 8.4 Let n > 1, the following always hold:

HE o) = o S (1)),

y<2mn

where T -y = ToYo D T1Y1 P ... Tn_1Yn_1 S the dot product of their binary digits T = ZZ 220, y = ZZ y; 2
in Fy

Proof: As a homework assignement. [|

8.2 The Deutsch algorithm

Prior work of Deutsch involved a special case of the Deutsch-Jozsa algorithm, namely when n = 1. This can
be rephrased as checking whether a function f : {0,1} — {0,1} satisfies f(0) = f(1) or f(0) # f(1). This
can be done by computing f twice (on input 0 and on input 1) and checking whether the resulting values
are equal. Deutsch’s algorithm shows how a quantum computer can perform this task with only one call
to an implementation of f. We show how this work because it is a nice introduction to the more general
Deutsch-Jozsa algorithm. We assume that f is given under the form of a quantum circuit that does

o) 4 — @

) — =@ f(a))

Remember that we have seen that this is always possible, modulo the use of ancilla qubits which are not
represented here. We use the circuit Uy as follows:

o —{H]—

Uy)

Proposition 8.5 With the above notation, when a = 0, b = 1, the measurement of the first qubit of |1))
yields

e 04 f(0) = f(1).
o Lif f(0) # f(1).

Proof: We have that |¢) = (H ® I)(Up)H®?(|0) ® |1)). Let us evaluate these products from right to left.
We have

HZ2(|0) @ 1)) = %(I0> +1) ®(|0) = 1) = %(I0> ® (10) = [1) + [1) @ (|0) — [1)))

8-4 Lecture 8: The Deutsch-Jozsa Algorithm

Then the action of U on this state yields

UpH®2(10) @ 1)) = 5 (10) ® (|£(0) ©0) = [f(0) @ 1)) + [1) @ (If (1) ® 0) — [f(1) ® 1))

(1)@ 1oy @ (0} = 1)) + (~1)/D[1) @ (j0) — 1))
O (j0) + (-1 O) 5 (0) — 1)
<|O> + (—l)f(o)@f(1)> ® (]0) — |1)) (we can ignore a global phase)

TN RN =

=

2

2

We are now dealing with a product state. Both qubits are independant, and we simply look at the action of

H on the first quit that is in the state which is given by
H roermy - 1 OEY) FO)®£(1)
75 (0 +1)) =35 (100 +1)+ (1) 0) = (~1))

14+ (=1)f@erQ) 1— (=1)fO@af1)

).

When f(0)@® f(1) = 0, this state equals |0) (and thus the final measurement is 0), and when f(0)® f(1) = 1,
this state equals [1). [

8.3 The Deutsch-Jozsa algorithm

We assume that f:{0,1}" — {0,1} is given under the form of a quantum circuit that does

)= =lo

) — =1 f(a))

This is the same as for the Deutsch algorithm, except that we have replace the first qubit by n qubits. Then
we use this circuit given in Figure 8.1.

O2fFH:

Uy
y—{al—y vewl——
0 U 1 1
lvo) lvr) lva) ws)

Figure 8.1: Deutsch-Jozsa algorithm

Let us analyze the algorithm step by step. First, [¢)0) = |0)®" ®@|1). Then after applying H®("+1) we obtain

1) = (H®"|0)*") @ (H |1)) = Y |y @ (o) — 1))

1
v 2n+t 2™

Lecture 8: The Deutsch-Jozsa Algorithm 8-5

Now we apply Uy. This yields the state

1
|¢2>=Wm;n|x>® 0@ f(z) —[1® f(z))

[f(=))

We have the following two possibilities:
o If f(z) =0, then [f(2)) — [L & f(z)) = |0) — [1) = (~=1)/*)(]0) — [1)).
o If f(z) =1, then [f(2)) — [1 & f(z)) = [1) — |0) = (=1)/*)(]0) — [1)).

Either way, we must have:

|va) =

Z (—1)7@z) @ (0) — 11)).

1
A /2n+1
This is a product state between \/27 > pcon (1)@ |z) and (|O> + |1)). We focus on the first n bits and

ignore the last one. The first n qubits of |¢)3) are given by

\/ﬁ Z f(I)H®n |z) = \/ﬁ Z f(r (ﬁ Z zy|y>

T<2m T<2m y<2m

- (Z (~1)f) -1y x>> .

r2m

We measure y = 0 with probability |- den(—l)f(f”) |2. This probability is 1 if f is constant, and 0 if f is
balanced, exactly like in the case n = 1 given by Deutsch algorithm.

