Factoring methods

We would like to factor N = pq, which breaks the RSA cryptosystem. We present two methods that
both rely on the creation of x # y such that 22 = y?> mod N (in fact several other methods proceed by
solving this equation). If we solve that equation, we have

2?2 —y> =0mod N
<~ (x—y)(r+y) =0mod N

< Nl(z—y)(z+vy)

If N =pgq, ged(zx —y,N) =porqor1orN. (good cases: p or q. Bad cases: 1 or N). It is only probabilistic,
but with constant probability it yields a non-trivial prime factor.

1 Polland’s Rho method

One way to solve our equation is to look for x,y is to try random values of P(x) = az?+b for some fixed a, b.
Indeed, if P(z) = P(y) mod N, then 22 = 4> mod N. We can even do better: let p|N, if P(z) = P(y) mod p,
then p|(x — y)(z + y) and ged(N,z —y) = p (or ged(N,x +y) = p). As there are less values P(x) mod p
than P(x) mod N, we expect this search to go faster. The only problem is to check if P(x) = P(y) mod p
(because p is unknown). But it suffices to check if ged(V, z — y) is non-trivial (i.e., # 1, N).

The other challenge is to find these collisions modulo N (or p) efficiently. Drawing lots of x; at random and
checking if P(x;) = P(z;) mod N for some z; previously drawn (or checking if ged(z; —xj, N) # 1, N) can
be very long.

From now on, we only care about testing collisions modulo p for p|N. Le., we test if z — y and N have
non-trivial gecd. We look at the series defined by ;11 = P(x;) for P of the form az? +b. We know that
P(z;) = P(z;) mod p if ged(x; — xj, N) is non-trivial. The series of P(z;) mod p looks like Figure ?7.

Definition 1. Let t be the smallest index such that there is j with x11; = x+ mod p. Let [ be the smallest
index such that .1 = x;.

Floyd’s collision finding method To find a collision x; = x; mod p, we use Floyd’s collision finding
algorithm. Given n;,i € Z (defined by n;+1 = f(n;)), and a function f (here f(n) = n mod p), it returns 4, j
such that z; = x;.

We use f(n) = P(n) mod p and the series given by z;+1 = P(x;) mod (n;),i € Z and function p, but
Floyd’s algorithm works for any f. We defined ¢ minimal such that z,,; = z; for some j and [ minimal such
that Tty = Xy

Proposition 1. Floyd’s algorithm outputs a collision after less (or exactly) t + 1 steps.



Figure 1: Series P(x;) mod p

Algorithm 1 Floyd’s Algorithm
Require: The function f and initial value ng.
Ensure: A collision for f.
1: Yo < Zo.
2: for all i do
3 Y Ty
4 if f(yi) = f(xi) then
5 return (,27).
6: end if
7: end for

Proof. Let j =t — (¢ mod ) 4. The index j has two important properties:
e j >t (so jis in the loop).

e [|j and because 2j — j = j, [|[(2 — j), so z2; and z; are on the same spot in the loop (modulo the
length of the loop).

So clearly y; = n; and we have a collision. O

Polland’s Rho algorithm In this case we pick f(n) = P(n) mod p for P(z) = ax® + b. But we don’t
know p so we don’t actually compute x;,y;, but we can still test if f(z;) = f(y;) at each step.

Example 1. N =8051, P(x) =22+ 1, 29 = yo = 2.

i x; Ui ged(|z; — yi|,8051)



Figure 2: Index ¢

Algorithm 2 Pollard’s p
Require: N and a polynomial P
Ensure: A non-trivial factor of N.
1: Yo < Zo.
2: for all i do

3: %41 < P(z;) mod N.

4: Yi+1 < P(P(yz)) mod N

5. if ged(z; — yi, N) is non trivial then
6: return p = ged(z; — y;, N).

7. end if

8: end for

2 26 7474 1

3 677 871 97

So 97 is a non-trivial factor of 8051 (the other being 83).

2 The quadratic sieve

This is another method to find non-trivial solutions of the equation 22 = y? mod N. Let P(z) = (a+z)?— N
be a "sieving polynomial.” If y = P(z) is a square B? then A> = B? mod N is a non-trivial solution for



A = a + z. But this happens very rarely.

So the way around this is to collect many values y; = P(z;) = (z;) = (z; + a)?> — N and to recombine them.
Let (e;),i € Z, be exponents such that [Jy;* = B? for some B, then:

B2 = T[w = [T+ - 3"
= 1_[((95Z +a)?)% mod N
= (1_[(95Z +a)%)? mod N
= A2 mod N
for A =T](z; + a)“.
So our problem really boils down to finding such e;. It is hard to guess them at random, but there is a way

to make it work: We only keep the y; that can be decomposed as a product of primes in a set 3 called the
”factor base.” Such elements y; are called ” S-smooth”. So each y; we keep has the form

m;,l m;,k

yi = pl .. pk
We call the matrix M = (m; ;) the "relation matrix”. We compute « € KerM mod 2. For such z:

Tp 2T STwimik _ Omod2 Omod2 __ 2d 2d
[Tvi =»; cepp T = et et = ph i

= (p{* - -p{*)? for some d;

= B?
This solves our equation 22 = y?> mod N. Before moving on to an example, let us address two issues:
e how to choose a.
e how to choose S.

Choice of a: To maximize the chances of y; being S-smooth, we make them as small as possible. So a ~ v N
and y; = 2ax + 2.

Choice of §: Because we want the p € 8 to divide (at least some of) the y;, we assume that for each p € g,
there is a y; with
plyi, so N = (a +xi)2 mod p

So for p to appear in at least one of the relations, N has to be a quadratic residue modulo p (a square). So
we pick p’s such that IV is a square module p. It is characterized by the following theorem.

Theorem 1. N is a square modulo p > 2 iff N*3 =1 mod p. N is always a square modulo 2.

Example 2. Ezample of the execution of the quadratic sieve: N = 15347. We use the sieve polynomial
y(@) = (|VN] +2)? = N = (124 + 2)> = NV.

For the factor base, we pick the first 4 primes such that N is a square: p = 2,17,23,29.

The relation matrixz is

=

I
— = O
_ = O
_ = O
— O



r | x4+ 124 ‘ Y ‘ Factorization
0 124 29 201709230291
3 127 782 21171231290
71 195 22678 | 21171231291

S = [111] is in ker(M) mod 2.

Then we have 124212721952 = 22172232292 mod N <= 3070860% = 226782 mod N and ged(3070860 —
22670, N) = 103, a non-trivial factor of N.



