
Factoring methods

We would like to factor N = pq, which breaks the RSA cryptosystem. We present two methods that
both rely on the creation of x 6= y such that x2 = y2 mod N (in fact several other methods proceed by
solving this equation). If we solve that equation, we have

x2 − y2 = 0 mod N

⇐⇒ (x− y)(x+ y) = 0 mod N

⇐⇒ N |(x− y)(x+ y)

If N = pq, gcd(x− y,N) = p or q or 1 or N. (good cases: p or q. Bad cases: 1 or N). It is only probabilistic,
but with constant probability it yields a non-trivial prime factor.

1 Polland’s Rho method

One way to solve our equation is to look for x, y is to try random values of P (x) = ax2 +b for some fixed a, b.
Indeed, if P (x) = P (y) mod N , then x2 = y2 mod N . We can even do better: let p|N , if P (x) = P (y) mod p,
then p|(x − y)(x + y) and gcd(N, x − y) = p (or gcd(N, x + y) = p). As there are less values P (x) mod p
than P (x) mod N , we expect this search to go faster. The only problem is to check if P (x) = P (y) mod p
(because p is unknown). But it suffices to check if gcd(N, x− y) is non-trivial (i.e., 6= 1, N).

The other challenge is to find these collisions modulo N (or p) efficiently. Drawing lots of xi at random and
checking if P (xi) = P (xj) mod N for some xj previously drawn (or checking if gcd(xi− xj , N) 6= 1, N) can
be very long.

From now on, we only care about testing collisions modulo p for p|N . I.e., we test if x − y and N have
non-trivial gcd. We look at the series defined by xi+1 = P (xi) for P of the form ax2 + b. We know that
P (xi) = P (xj) mod p if gcd(xi − xj , N) is non-trivial. The series of P (xi) mod p looks like Figure ??.

Definition 1. Let t be the smallest index such that there is j with xt+j = xt mod p. Let l be the smallest
index such that xt+l = xl.

Floyd’s collision finding method To find a collision xi = xj mod p, we use Floyd’s collision finding
algorithm. Given ni, i ∈ Z (defined by ni+1 = f(ni)), and a function f (here f(n) = n mod p), it returns i, j
such that xi = xj .

We use f(n) = P (n) mod p and the series given by xi+1 = P (xi) mod (ni), i ∈ Z and function p, but
Floyd’s algorithm works for any f . We defined t minimal such that xt+j = xt for some j and l minimal such
that xt+l = xl.

Proposition 1. Floyd’s algorithm outputs a collision after less (or exactly) t+ l steps.

1

Figure 1: Series P (xi) mod p

Algorithm 1 Floyd’s Algorithm

Require: The function f and initial value n0.
Ensure: A collision for f .
1: y0 ← x0.
2: for all i do
3: yi ← x2i
4: if f(yi) = f(xi) then
5: return (i, 2i).
6: end if
7: end for

Proof. Let j = t− (t mod l) + l. The index j has two important properties:

• j ≥ t (so j is in the loop).

• l|j and because 2j − j = j, l|(2j − j), so x2j and xj are on the same spot in the loop (modulo the
length of the loop).

So clearly yj = nj and we have a collision.

Polland’s Rho algorithm In this case we pick f(n) = P (n) mod p for P (x) = ax2 + b. But we don’t
know p so we don’t actually compute xi, yi, but we can still test if f(xi) = f(yi) at each step.

Example 1. N = 8051, P (x) = x2 + 1, x0 = y0 = 2.

i xi yi gcd(|xi − yi|, 8051)

1 5 26 1

2

Figure 2: Index t

Algorithm 2 Pollard’s ρ

Require: N and a polynomial P
Ensure: A non-trivial factor of N .
1: y0 ← x0.
2: for all i do
3: xi+1 ← P (xi) mod N .
4: yi+1 ← P (P (yi)) mod N
5: if gcd(xi − yi, N) is non trivial then
6: return p = gcd(xi − yi, N).
7: end if
8: end for

2 26 7474 1

3 677 871 97

So 97 is a non-trivial factor of 8051 (the other being 83).

2 The quadratic sieve

This is another method to find non-trivial solutions of the equation x2 = y2 mod N . Let P (x) = (a+x)2−N
be a ”sieving polynomial.” If y = P (x) is a square B2 then A2 = B2 mod N is a non-trivial solution for

3

A = a+ x. But this happens very rarely.

So the way around this is to collect many values yi = P (xi) = (xi) = (xi + a)2 −N and to recombine them.
Let (ei), i ∈ Z, be exponents such that

∏
yeii = B2 for some B, then:

B2 =
∏

yeii =
∏

((xi + a)2 −N)ei

=
∏

((xi + a)2)ei mod N

= (
∏

(xi + a)ei)2 mod N

= A2 mod N

for A =
∏

(xi + a)ei .

So our problem really boils down to finding such ei. It is hard to guess them at random, but there is a way
to make it work: We only keep the yi that can be decomposed as a product of primes in a set β called the
”factor base.” Such elements yi are called ”β-smooth”. So each yi we keep has the form

yi = pmi,1
1 · · · pmi,k

k

We call the matrix M = (mi,j) the ”relation matrix”. We compute x ∈ KerM mod 2. For such x:∏
yxi
i = p

∑
ximi,1

i · · · p
∑

ximi,k

k = p0mod2
1 · · · p0mod2

k = p2d1
1 · · · p2dk

k

= (pd1
1 · · · p

dk

k)2 for some di

= B2

This solves our equation x2 = y2 mod N . Before moving on to an example, let us address two issues:

• how to choose a.

• how to choose β.

Choice of a: To maximize the chances of yi being β-smooth, we make them as small as possible. So a ≈
√
N

and yi = 2ax+ x2.

Choice of β: Because we want the p ∈ β to divide (at least some of) the yi, we assume that for each p ∈ β,
there is a yi with

p|yi, so N = (a+ xi)
2 mod p

So for p to appear in at least one of the relations, N has to be a quadratic residue modulo p (a square). So
we pick p’s such that N is a square module p. It is characterized by the following theorem.

Theorem 1. N is a square modulo p > 2 iff N
p−1
2 = 1 mod p. N is always a square modulo 2.

Example 2. Example of the execution of the quadratic sieve: N = 15347. We use the sieve polynomial

y(x) = (
⌈√

N
⌉

+ x)2 −N = (124 + x)2 −N .

For the factor base, we pick the first 4 primes such that N is a square: p = 2, 17, 23, 29.

The relation matrix is

M =

0 0 0 1
1 1 1 0
1 1 1 1


4

x x+ 124 y Factorization
0 124 29 20170230291

3 127 782 21171231290

71 195 22678 21171231291

S = [111] is in ker(M) mod 2.

Then we have 124212721952 = 22172232292 mod N ⇐⇒ 30708602 = 226782 mod N and gcd(3070860 −
22670, N) = 103, a non-trivial factor of N .

5

