Factoring methods

We would like to factor N = pq, which breaks the RSA cryptosystem. We present two methods that both rely on the creation of $x \neq y$ such that $x^2 = y^2 \mod N$ (in fact several other methods proceed by solving this equation). If we solve that equation, we have

$$x^{2} - y^{2} = 0 \mod N$$
$$\iff (x - y)(x + y) = 0 \mod N$$
$$\iff N|(x - y)(x + y)$$

If N = pq, gcd(x - y, N) = p or q or 1 or N. (good cases: p or q. Bad cases: 1 or N). It is only probabilistic, but with constant probability it yields a non-trivial prime factor.

1 Polland's Rho method

One way to solve our equation is to look for x, y is to try random values of $P(x) = ax^2 + b$ for some fixed a, b. Indeed, if $P(x) = P(y) \mod N$, then $x^2 = y^2 \mod N$. We can even do better: let p|N, if $P(x) = P(y) \mod p$, then p|(x - y)(x + y) and gcd(N, x - y) = p (or gcd(N, x + y) = p). As there are less values $P(x) \mod p$ than $P(x) \mod N$, we expect this search to go faster. The only problem is to check if $P(x) = P(y) \mod p$ (because p is unknown). But it suffices to check if gcd(N, x - y) is non-trivial (i.e., $\neq 1, N$).

The other challenge is to find these collisions modulo N (or p) efficiently. Drawing lots of x_i at random and checking if $P(x_i) = P(x_j) \mod N$ for some x_j previously drawn (or checking if $gcd(x_i - x_j, N) \neq 1, N$) can be very long.

From now on, we only care about testing collisions modulo p for p|N. I.e., we test if x - y and N have non-trivial gcd. We look at the series defined by $x_{i+1} = P(x_i)$ for P of the form $ax^2 + b$. We know that $P(x_i) = P(x_j) \mod p$ if $gcd(x_i - x_j, N)$ is non-trivial. The series of $P(x_i) \mod p$ looks like Figure ??.

Definition 1. Let t be the smallest index such that there is j with $x_{t+j} = x_t \mod p$. Let l be the smallest index such that $x_{t+l} = x_l$.

Floyd's collision finding method To find a collision $x_i = x_j \mod p$, we use Floyd's collision finding algorithm. Given $n_i, i \in \mathbb{Z}$ (defined by $n_{i+1} = f(n_i)$), and a function f (here $f(n) = n \mod p$), it returns i, j such that $x_i = x_j$.

We use $f(n) = P(n) \mod p$ and the series given by $x_{i+1} = P(x_i) \mod (n_i), i \in \mathbb{Z}$ and function p, but Floyd's algorithm works for any f. We defined t minimal such that $x_{t+j} = x_t$ for some j and l minimal such that $x_{t+l} = x_l$.

Proposition 1. Floyd's algorithm outputs a collision after less (or exactly) t + l steps.

Algorithm 1 Floyd's Algorithm **Require:** The function f and initial value n_0 .

Ensure: A collision for f.

1: $y_0 \leftarrow x_0$. 2: for all *i* do 3: $y_i \leftarrow x_{2i}$ 4: if $f(y_i) = f(x_i)$ then 5: return (i, 2i). 6: end if 7: end for

Proof. Let $j = t - (t \mod l) + l$. The index j has two important properties:

- $j \ge t$ (so j is in the loop).
- l|j and because 2j j = j, l|(2j j), so x_{2j} and x_j are on the same spot in the loop (modulo the length of the loop).

So clearly $y_j = n_j$ and we have a collision.

Polland's Rho algorithm In this case we pick $f(n) = P(n) \mod p$ for $P(x) = ax^2 + b$. But we don't know p so we don't actually compute x_i, y_i , but we can still test if $f(x_i) = f(y_i)$ at each step.

Example 1.
$$N = 8051$$
, $P(x) = x^2 + 1$, $x_0 = y_0 = 2$.

1

$$i \qquad x_i \qquad y_i \qquad gcd(|x_i - y_i|, 8051)$$

1

looks lik 1) 41

Algorithm 2 Pollard's ρ
Require: N and a polynomial P
Ensure: A non-trivial factor of N .
1: $y_0 \leftarrow x_0$.
2: for all <i>i</i> do
3: $x_{i+1} \leftarrow P(x_i) \mod N.$
4: $y_{i+1} \leftarrow P(P(y_i)) \mod N$
5: if $gcd(x_i - y_i, N)$ is non trivial then
6: $\mathbf{return} \ p = \gcd(x_i - y_i, N).$
7: end if
8: end for

2	26	7474	1
3	677	871	97

So 97 is a non-trivial factor of 8051 (the other being 83).

2 The quadratic sieve

This is another method to find non-trivial solutions of the equation $x^2 = y^2 \mod N$. Let $P(x) = (a+x)^2 - N$ be a "sieving polynomial." If y = P(x) is a square B^2 then $A^2 = B^2 \mod N$ is a non-trivial solution for

A = a + x. But this happens very rarely.

So the way around this is to collect many values $y_i = P(x_i) = (x_i) = (x_i + a)^2 - N$ and to recombine them. Let $(e_i), i \in \mathbb{Z}$, be exponents such that $\prod y_i^{e_i} = B^2$ for some B, then:

$$B^{2} = \prod y_{i}^{e_{i}} = \prod ((x_{i} + a)^{2} - N)^{e_{i}}$$
$$= \prod ((x_{i} + a)^{2})^{e_{i}} \mod N$$
$$= (\prod (x_{i} + a)^{e_{i}})^{2} \mod N$$
$$= A^{2} \mod N$$

for $A = \prod (x_i + a)^{e_i}$.

So our problem really boils down to finding such e_i . It is hard to guess them at random, but there is a way to make it work: We only keep the y_i that can be decomposed as a product of primes in a set β called the "factor base." Such elements y_i are called " β -smooth". So each y_i we keep has the form

$$y_i = p_1^{m_i, 1} \cdots p_k^{m_i, k}$$

We call the matrix $M = (m_{i,j})$ the "relation matrix". We compute $x \in KerM \mod 2$. For such x:

$$\prod y_i^{x_i} = p_i^{\sum x_i m_{i,1}} \cdots p_k^{\sum x_i m_{i,k}} = p_1^{0mod2} \cdots p_k^{0mod2} = p_1^{2d_1} \cdots p_k^{2d_k}$$
$$= (p_1^{d_1} \cdots p_k^{d_k})^2 \text{ for some } d_i$$
$$= B^2$$

This solves our equation $x^2 = y^2 \mod N$. Before moving on to an example, let us address two issues:

- how to choose a.
- how to choose β .

<u>Choice of a</u>: To maximize the chances of y_i being β -smooth, we make them as small as possible. So $a \approx \sqrt{N}$ and $y_i = 2ax + x^2$.

Choice of β : Because we want the $p \in \beta$ to divide (at least some of) the y_i , we assume that for each $p \in \beta$, there is a y_i with

$$p|y_i, so N = (a+x_i)^2 \mod p$$

So for p to appear in at least one of the relations, N has to be a quadratic residue modulo p (a square). So we pick p's such that N is a square module p. It is characterized by the following theorem.

Theorem 1. N is a square modulo p > 2 iff $N^{\frac{p-1}{2}} = 1 \mod p$. N is always a square modulo 2.

Example 2. Example of the execution of the quadratic sieve: N = 15347. We use the sieve polynomial $y(x) = (\left\lceil \sqrt{N} \right\rceil + x)^2 - N = (124 + x)^2 - N$.

For the factor base, we pick the first 4 primes such that N is a square: p = 2, 17, 23, 29.

The relation matrix is

$$M = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

x	x + 124	y	Factorization
0	124	29	$2^{0}17^{0}23^{0}29^{1}$
3	127	782	$2^{1}17^{1}23^{1}29^{0}$
71	195	22678	$2^{1}17^{1}23^{1}29^{1}$

S = [111] is in $ker(M) \mod 2$.

Then we have $124^2127^2195^2 = 2^217^223^229^2 \mod N \iff 3070860^2 = 22678^2 \mod N$ and gcd(3070860 - 22670, N) = 103, a non-trivial factor of N.