
The security of RSA

Reminder: The public parameters are N, e coprime to (the non-public) φ(N). The private parameters are
p, q such that N = pq, d = e−1 mod φ(N) = (p− 1)(q − 1).

Enc(m,Pk) = me mod N = c

Dec(c, Sk) = cd mod N = med mod N = m

In this lecture, we show one attack on RSA (that works for a bad choice of private parameters), and then
we discuss the security model that is relevant to public-key encryption (chosen ciphertext attack).

1 The ”Low exponent attack”

We will show that if d is chosen too low (< 1
3N

1/4) then there is an efficient algorithm to recover it.

Proposition 1. Suppose q < p < 2q (a standard assumption) and suppose that d < 1
3N

1/4 (i.e., d is
”small”). Then there is an efficient algorithm to compute d.

Proof. Let h such that ed = 1 + h(p− 1)(q − 1). We will show that e
N is very close to h

d . Then we use the
continued fraction expansion of e/N to recover h/d. Finally since h = d = 1 (because ed−h(p−1)(q−1) = 1)
this yields d.

We proceed by bounding hN − ed from above.

hN − ed = hN − hφ(N)− 1 < hN − hφ(N) = h(N − φ(N)

N − φ(N) = pq − (p− 1)(q − 1) = pq − (pq − p− q + 1)

= p+ q − 1 < 3q < 3N1/2

Moreover φ(N)h = ed − 1 < ed < 1
3N

1/4φ(N). (Since e < φ(N), d < 1
3N

1/4). So h < 1
3N

1/4 and

hN − ed < 1
3N

1/43N1/2 = N3/4. We divide by Nd.

h

d
− e

N
<

1

dN1/4

and since d < 1
3N

1/4,

1

dN1/4
<

1

3d
<

1

3d2
<

1

2d2

So we have ∣∣∣∣∣ eN − h

d

∣∣∣∣∣ < 1

2d2

.
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According to a well-known result, the continued fraction expansion of e/N contains h/d. But what is the
continued fraction expansion of n ∈ R? It is a process which goes like this:
1st step: a0 = bnc , n = a0 + ε0, 0 ≤ ε0 < 1 So n ∼ a0 ∈ Z, a0 = p0/q0

2nd step: 1/ε0 = a1 + ε1 where a1 = b1/ε0c , 0 ≤ ε1 < 1 so n = a0 + 1
a1+ε1

∼ a0 + 1/a1 = p1/q1.

3rd step: 1/ε1 = a2 + ε2 where a2 = b1/ε1c , 0 ≤ ε1 < 1 so

n = a0 +
1

a1 + 1
a2+ε2

∼ a0 +
1

a1 + 1
a2

=
p2
q2

etc... The sequence p0/q0, p1/q1, p2/q2, ... is the continued fraction expansion of n. It may be infinite. If
n = e/N , there are at most log(N) different pi/qi,and if |n− h/d| < 1

2d2 , one of them has to be h/d.

So the attack is the following:

1. Compute the continued fraction expansion p0/q0, p1/q1, ... of e/N .

2. For each pi/qi, hope that pi
qi

= A
B where (hopefully) A = h,B = d. Let C = eB−1

A be a candidate for

φ(N). If C is not an integer, go back to step 1; otherwise move on to step 3.

3. We want to calculate the secret p, q. They are the roots of (x − p)(x − q). If C = φ(N), then
x2 − (N − C + 1)X + N = (x − p)(x − q) and therefore its roots are the secret divisors of N . If not,
go back to step 1.

2 Chosen Plaintext Attacks (and why it is not enough)

The security game we have used so far to modelize the adversary makes the assumption that they are passive:

Challenger Adversary

encrypts m0,m chooses m0,m. Decides which message was encrypted.

This situation is known as the Chosen Plaintext Attack (CPA), it is the standard test for secret-key encryption
(in the one-time key context). It is not enough to assess the security of a public key encryption scheme. In
many cases, it makes sense to give the adversary access to a decryption oracle.

Example 1 (Situation where the adversary has the decryption of a chosen ciphertext). Bob encrypts
m = to : Alice@gmail.com | body −→ gmail decrypts m reads recipient −→ sends body to Alice.

The adversary sees c = c1 | c2 where c1 = Enc(to : Alice@gamil.com), c2 is the encryption of the body.

If the adversary wants the decryption of c2 he can compute c′1 = Enc(to : Adversary@gmail.com). produce
c′ = c′1 | c2.

Send c′ to gmail, and he will receive Dec(c2, Sk).
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3 Chosen Ciphertext Attacks

To account for the possibility that an adversary could have access to a decryption algorithm, we add de-
cryption queries before the adversary chooses m0,m1 (phase 1) and after (phase 2).

Challenger Adversary

chooses c1, · · · , cq ∈ C
←− Asks for decryption of the ci

Sends Dec(ci, k) −→
(Phase 1)

Chooses m0,m1

←− Sends m0,m1

Chooses i ∈ {0, 1}
encrypts c = Enc(mi)

Sends c −→
(Challenge)

Chooses c′1, · · · , c′q 6= c
←− Asks for decryption of the c′i

Sends Dec(c′i, k) −→
(Phase 2)

Decides which mi was encrypted

Definition 1 (IND-CCA 1 secure). If the scheme is secure with only Phase 1 (but no Phase 2), we say it
is Indistinguishable under the non-adaptive Chosen Ciphertext Attack, and we denote it by IND-CCA 1.

Definition 2 (IND-CCA 2 secure). If the scheme is secure with Phase 1 and 2, it is Indistinguishable under
the adaptive Chosen Ciphertext Attack, and we denote it by IND-CCA 2.

Example 2. Textbook RSA is malleable. It means that without the random padding, Enc(m1, Pk)·Enc(m2, Pk) =
Enc(m1m2, Pk). This is why it cannot achieve IND-CCA 2 with textbook RSA:

Challenger Adversary

Decrypts c1 ←− chooses c1 ∈ C

m1 = Dec(c1, Sk) −→ chooses m0 ∈M

Encrypts ←− sends m0,m1

ci = Enc(mi, Pk) −→ Compute c = c1ci

Decrypts c ←− Asks for the decryption of c

Dec(c, Sk) = mim1 −→ computes mi =
m1mi

m1
Solves the Problem
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