The security of RSA

Reminder: The public parameters are N, e coprime to (the non-public) $\phi(N)$. The private parameters are p, q such that $N=p q, d=e^{-1} \bmod \phi(N)=(p-1)(q-1)$.

$$
\begin{aligned}
\operatorname{Enc}(m, P k) & =m^{e} \quad \bmod N=c \\
\operatorname{Dec}(c, S k) & =c^{d} \quad \bmod N=m^{e d} \quad \bmod N=m
\end{aligned}
$$

In this lecture, we show one attack on RSA (that works for a bad choice of private parameters), and then we discuss the security model that is relevant to public-key encryption (chosen ciphertext attack).

1 The "Low exponent attack"

We will show that if d is chosen too low $\left(<\frac{1}{3} N^{1 / 4}\right)$ then there is an efficient algorithm to recover it.
Proposition 1. Suppose $q<p<2 q$ (a standard assumption) and suppose that $d<\frac{1}{3} N^{1 / 4}$ (i.e., d is "small"). Then there is an efficient algorithm to compute d.

Proof. Let h such that $e d=1+h(p-1)(q-1)$. We will show that $\frac{e}{N}$ is very close to $\frac{h}{d}$. Then we use the continued fraction expansion of e / N to recover h / d. Finally since $h=d=1$ (because $e d-h(p-1)(q-1)=1)$ this yields d.

We proceed by bounding $h N-e d$ from above.

$$
\begin{aligned}
& h N-e d=h N-h \phi(N)-1<h N-h \phi(N)=h(N-\phi(N) \\
& \begin{aligned}
N-\phi(N) & =p q-(p-1)(q-1)=p q-(p q-p-q+1) \\
& =p+q-1<3 q<3 N^{1 / 2}
\end{aligned}
\end{aligned}
$$

Moreover $\phi(N) h=e d-1<e d<\frac{1}{3} N^{1 / 4} \phi(N)$. (Since $e<\phi(N), d<\frac{1}{3} N^{1 / 4}$). So $h<\frac{1}{3} N^{1 / 4}$ and $h N-e d<\frac{1}{3} N^{1 / 4} 3 N^{1 / 2}=N^{3 / 4}$. We divide by $N d$.

$$
\frac{h}{d}-\frac{e}{N}<\frac{1}{d N^{1 / 4}}
$$

and since $d<\frac{1}{3} N^{1 / 4}$,

$$
\frac{1}{d N^{1 / 4}}<\frac{1}{3 d}<\frac{1}{3 d^{2}}<\frac{1}{2 d^{2}}
$$

So we have

$$
\left|\frac{e}{N}-\frac{h}{d}\right|<\frac{1}{2 d^{2}}
$$

According to a well-known result, the continued fraction expansion of e / N contains h / d. But what is the continued fraction expansion of $n \in \mathbb{R}$? It is a process which goes like this:
1st step: $a_{0}=\lfloor n\rfloor, n=a_{0}+\epsilon_{0}, 0 \leq \epsilon_{0}<1$ So $n \sim a_{0} \in \mathbb{Z}, a_{0}=p_{0} / q_{0}$
2nd step: $1 / \epsilon_{0}=a_{1}+\epsilon_{1}$ where $a_{1}=\left\lfloor 1 / \epsilon_{0}\right\rfloor, 0 \leq \epsilon_{1}<1$ so $n=a_{0}+\frac{1}{a_{1}+\epsilon_{1}} \sim a_{0}+1 / a_{1}=p_{1} / q_{1}$.
3rd step: $1 / \epsilon_{1}=a_{2}+\epsilon_{2}$ where $a_{2}=\left\lfloor 1 / \epsilon_{1}\right\rfloor, 0 \leq \epsilon_{1}<1$ so

$$
n=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\epsilon_{2}}} \sim a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}}}=\frac{p_{2}}{q_{2}}
$$

etc... The sequence $p_{0} / q_{0}, p_{1} / q_{1}, p_{2} / q_{2}, \ldots$ is the continued fraction expansion of n. It may be infinite. If $n=e / N$, there are at most $\log (N)$ different p_{i} / q_{i}, and if $|n-h / d|<\frac{1}{2 d^{2}}$, one of them has to be h / d.

So the attack is the following:

1. Compute the continued fraction expansion $p_{0} / q_{0}, p_{1} / q_{1}, \ldots$ of e / N.
2. For each p_{i} / q_{i}, hope that $\frac{p_{i}}{q_{i}}=\frac{A}{B}$ where (hopefully) $A=h, B=d$. Let $C=\frac{e B-1}{A}$ be a candidate for $\phi(N)$. If C is not an integer, go back to step 1 ; otherwise move on to step 3.
3. We want to calculate the secret p, q. They are the roots of $(x-p)(x-q)$. If $C=\phi(N)$, then $x^{2}-(N-C+1) X+N=(x-p)(x-q)$ and therefore its roots are the secret divisors of N. If not, go back to step 1 .

2 Chosen Plaintext Attacks (and why it is not enough)

The security game we have used so far to modelize the adversary makes the assumption that they are passive:

Challenger
encrypts m_{0}, m

Adversary

chooses m_{0}, m. Decides which message was encrypted.

This situation is known as the Chosen Plaintext Attack (CPA), it is the standard test for secret-key encryption (in the one-time key context). It is not enough to assess the security of a public key encryption scheme. In many cases, it makes sense to give the adversary access to a decryption oracle.

Example 1 (Situation where the adversary has the decryption of a chosen ciphertext). Bob encrypts $m=$ to : Alice@gmail.com \mid body \longrightarrow gmail decrypts m reads recipient \longrightarrow sends body to Alice.

The adversary sees $c=c_{1} \mid c_{2}$ where $c_{1}=\operatorname{Enc}($ to : Alice@gamil.com $), c_{2}$ is the encryption of the body.
If the adversary wants the decryption of c_{2} he can compute $c_{1}^{\prime}=E n c(t o: A d v e r s a r y @ g m a i l . c o m)$. produce $c^{\prime}=c_{1}^{\prime} \quad \mid \quad c_{2}$.

Send c^{\prime} to gmail, and he will receive $\operatorname{Dec}\left(c_{2}, S k\right)$.

3 Chosen Ciphertext Attacks

To account for the possibility that an adversary could have access to a decryption algorithm, we add decryption queries before the adversary chooses m_{0}, m_{1} (phase 1) and after (phase 2).

Challenger Adversary
chooses $c_{1}, \cdots, c_{q} \in \mathcal{C}$
(Phase 1)
Chooses m_{0}, m_{1}
Sends m_{0}, m_{1}
Chooses $i \in\{0,1\}$
encrypts $c=\operatorname{Enc}\left(m_{i}\right)$
Sends c
(Challenge)
Chooses $c_{1}^{\prime}, \cdots, c_{q}^{\prime} \neq c$
Asks for decryption of the c_{i}^{\prime}
Sends $\operatorname{Dec}\left(c_{i}^{\prime}, k\right)$
\longleftrightarrow
(Phase 2)

Decides which m_{i} was encrypted

Definition 1 (IND-CCA 1 secure). If the scheme is secure with only Phase 1 (but no Phase 2), we say it is Indistinguishable under the non-adaptive Chosen Ciphertext Attack, and we denote it by IND-CCA 1.

Definition 2 (IND-CCA 2 secure). If the scheme is secure with Phase 1 and 2, it is Indistinguishable under the adaptive Chosen Ciphertext Attack, and we denote it by IND-CCA 2.

Example 2. Textbook RSA is malleable. It means that without the random padding, Enc $\left(m_{1}, P k\right) \cdot E n c\left(m_{2}, P k\right)=$ $\operatorname{Enc}\left(m_{1} m_{2}, P k\right)$. This is why it cannot achieve IND-CCA 2 with textbook RSA:

$$
\begin{aligned}
& \text { Challenger Adversary } \\
& \text { Decrypts } c_{1} \quad \longleftarrow \text { chooses } c_{1} \in \mathcal{C} \\
& m_{1}=\operatorname{Dec}\left(c_{1}, S k\right) \quad \longrightarrow \quad \text { chooses } m_{0} \in \mathcal{M} \\
& \text { Encrypts } \longleftarrow \text { sends } m_{0}, m_{1} \\
& c_{i}=\operatorname{Enc}\left(m_{i}, P k\right) \quad \longrightarrow \quad \text { Compute } c=c_{1} c_{i} \\
& \text { Decrypts } c \quad \longleftarrow \text { Asks for the decryption of } c \\
& \operatorname{Dec}(c, S k)=m_{i} m_{1} \quad \longrightarrow \quad \text { computes } m_{i}=\frac{m_{1} m_{i}}{m_{1}} \quad \text { Solves the Problem }
\end{aligned}
$$

