The security of RSA

<u>Reminder</u>: The public parameters are N, e coprime to (the non-public) $\phi(N)$. The private parameters are p, q such that N = pq, $d = e^{-1} \mod \phi(N) = (p-1)(q-1)$.

$$Enc(m, Pk) = m^{e} \mod N = c$$
$$Dec(c, Sk) = c^{d} \mod N = m^{ed} \mod N = m$$

In this lecture, we show one attack on RSA (that works for a bad choice of private parameters), and then we discuss the security model that is relevant to public-key encryption (chosen ciphertext attack).

1 The "Low exponent attack"

We will show that if d is chosen too low $\left(< \frac{1}{3}N^{1/4} \right)$ then there is an efficient algorithm to recover it.

Proposition 1. Suppose $q (a standard assumption) and suppose that <math>d < \frac{1}{3}N^{1/4}$ (i.e., d is "small"). Then there is an efficient algorithm to compute d.

Proof. Let h such that ed = 1 + h(p-1)(q-1). We will show that $\frac{e}{N}$ is very close to $\frac{h}{d}$. Then we use the continued fraction expansion of e/N to recover h/d. Finally since h = d = 1 (because ed - h(p-1)(q-1) = 1) this yields d.

We proceed by bounding hN - ed from above.

$$hN - ed = hN - h\phi(N) - 1 < hN - h\phi(N) = h(N - \phi(N))$$

$$N - \phi(N) = pq - (p-1)(q-1) = pq - (pq - p - q + 1)$$
$$= p + q - 1 < 3q < 3N^{1/2}$$

Moreover $\phi(N)h = ed - 1 < ed < \frac{1}{3}N^{1/4}\phi(N)$. (Since $e < \phi(N)$, $d < \frac{1}{3}N^{1/4}$). So $h < \frac{1}{3}N^{1/4}$ and $hN - ed < \frac{1}{3}N^{1/4}3N^{1/2} = N^{3/4}$. We divide by Nd.

$$\frac{h}{d} - \frac{e}{N} < \frac{1}{dN^{1/4}}$$

and since $d < \frac{1}{3}N^{1/4}$,

$$\frac{1}{dN^{1/4}} < \frac{1}{3d} < \frac{1}{3d^2} < \frac{1}{2d^2}$$

So we have

$$\left|\frac{e}{N} - \frac{h}{d}\right| < \frac{1}{2d^2}$$

According to a well-known result, the continued fraction expansion of e/N contains h/d. But what is the continued fraction expansion of $n \in \mathbb{R}$? It is a process which goes like this: 1st step: $a_0 = \lfloor n \rfloor$, $n = a_0 + \epsilon_0$, $0 \le \epsilon_0 < 1$ So $n \sim a_0 \in \mathbb{Z}$, $a_0 = p_0/q_0$

 $\underline{\text{2nd step: }} 1/\epsilon_0 = a_1 + \epsilon_1 \text{ where } a_1 = \lfloor 1/\epsilon_0 \rfloor, \ 0 \le \epsilon_1 < 1 \text{ so } n = a_0 + \frac{1}{a_1 + \epsilon_1} \sim a_0 + 1/a_1 = p_1/q_1.$

3rd step: $1/\epsilon_1 = a_2 + \epsilon_2$ where $a_2 = \lfloor 1/\epsilon_1 \rfloor$, $0 \le \epsilon_1 < 1$ so

$$n = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \epsilon_2}} \sim a_0 + \frac{1}{a_1 + \frac{1}{a_2}} = \frac{p_2}{q_2}$$

etc... The sequence p_0/q_0 , p_1/q_1 , p_2/q_2 ,... is the continued fraction expansion of n. It may be infinite. If n = e/N, there are at most $\log(N)$ different p_i/q_i , and if $|n - h/d| < \frac{1}{2d^2}$, one of them has to be h/d.

So the attack is the following:

- 1. Compute the continued fraction expansion $p_0/q_0, p_1/q_1, \dots$ of e/N.
- 2. For each p_i/q_i , hope that $\frac{p_i}{q_i} = \frac{A}{B}$ where (hopefully) A = h, B = d. Let $C = \frac{eB-1}{A}$ be a candidate for $\phi(N)$. If C is not an integer, go back to step 1; otherwise move on to step 3.
- 3. We want to calculate the secret p,q. They are the roots of (x p)(x q). If $C = \phi(N)$, then $x^2 (N C + 1)X + N = (x p)(x q)$ and therefore its roots are the secret divisors of N. If not, go back to step 1.

2 Chosen Plaintext Attacks (and why it is not enough)

The security game we have used so far to modelize the adversary makes the assumption that they are passive:

Challenger

encrypts m_0, m

Adversary

chooses m_0, m . Decides which message was encrypted.

This situation is known as the Chosen Plaintext Attack (CPA), it is the standard test for secret-key encryption (in the one-time key context). It is not enough to assess the security of a public key encryption scheme. In many cases, it makes sense to give the adversary access to a decryption oracle.

Example 1 (Situation where the adversary has the decryption of a chosen ciphertext). Bob encrypts $m = to: Alice@gmail.com \mid body \longrightarrow gmail decrypts m reads recipient \longrightarrow sends body to Alice.$

The adversary sees $c = c_1 | c_2$ where $c_1 = Enc(to: Alice@gamil.com), c_2$ is the encryption of the body.

If the adversary wants the decryption of c_2 he can compute $c'_1 = Enc(to: Adversary@gmail.com)$. produce $c' = c'_1 \mid c_2$.

Send c' to gmail, and he will receive $Dec(c_2, Sk)$.

3 Chosen Ciphertext Attacks

To account for the possibility that an adversary could have access to a decryption algorithm, we add decryption queries before the adversary chooses m_0, m_1 (phase 1) and after (phase 2).

Challenger		Adversary
Sends $Dec(c_i, k)$	$\begin{array}{c} \longleftarrow \\ \longrightarrow \\ (\text{Phase 1}) \end{array}$	chooses $c_1, \cdots, c_q \in \mathcal{C}$ Asks for decryption of the c_i
Chooses $i \in \{0, 1\}$ encrypts $c = Enc(m_i)$ Sends c	$\stackrel{\longleftarrow}{\longrightarrow}$ (Challenge)	Chooses m_0, m_1 Sends m_0, m_1
Sends $Dec(c'_i, k)$	$\begin{array}{c} \longleftarrow \\ \longrightarrow \\ (\text{Phase 2}) \end{array}$	Chooses $c'_1, \cdots, c'_q \neq c$ Asks for decryption of the c'_i

Decides which m_i was encrypted

Definition 1 (IND-CCA 1 secure). If the scheme is secure with only Phase 1 (but no Phase 2), we say it is Indistinguishable under the non-adaptive Chosen Ciphertext Attack, and we denote it by IND-CCA 1.

Definition 2 (IND-CCA 2 secure). If the scheme is secure with Phase 1 and 2, it is Indistinguishable under the adaptive Chosen Ciphertext Attack, and we denote it by IND-CCA 2.

Example 2. Textbook RSA is malleable. It means that without the random padding, $Enc(m_1, Pk) \cdot Enc(m_2, Pk) = Enc(m_1m_2, Pk)$. This is why it cannot achieve IND-CCA 2 with textbook RSA:

Challenger	Adversary
$Decrypts$ c_1	$\longleftarrow chooses \ c_1 \in \mathcal{C}$
$m_1 = Dec(c_1, Sk) \longrightarrow$	chooses $m_0 \in \mathcal{M}$
Encrypts	\leftarrow sends m_0, m_1
$c_i = Enc(m_i, Pk) \longrightarrow$	$Compute \ c = c_1 c_i$
Decrypts c	$\longleftarrow Asks \ for \ the \ decryption \ of \ c$
$Dec(c, Sk) = m_i m_1 \longrightarrow$	computes $m_i = \frac{m_1 m_i}{m_1}$ Solves the Problem