
Introduction to Public key cryptography

So far, everything we did required a shared secret between the participants. This has the great disad-
vantage that we need to be able to securely exchange secrets between participants that are potentially far
apart. The objective of these two lectures is too introduce public key cryptography via three very important
instances:

• public key encryption.

• key exchange.

• signature.

1 Public key encryption (RSA)

The first instance of a public key encryption scheme is also the most widely used nowadays. Here is the
setting:

• PK: Public key: N = pg for two secret primes p, q and e ∈ Z that is invertible mod φ(N) = (p−1)(q−1).

• SK: Secret Key: d = e−1 mod (p− 1)(q − 1).

The encryption goes like that:

Enc(m,Pk) = me mod N = c

Dec(c, Sk) = cd mod N

The validity of the scheme is ensured by the following proposition:

Proposition 1 (Validity of the decryption). (me)d = m mod N .

Proof. We first need to calculate the cardinality of the multiplicative group (Z/NZ)∗. Let us look at the
morphism

Z/NZ f−−−−→ Z/pZ× Z/qZ

x mod N −−−−→ (x mod p, x mod q)
,

The morphism is injective because if x mod p = 0 and x mod q = 0 (i.e., f(x) = 0), then p|x and q|x
so pq = N |x and x mod N = 0 (i.e., Kerf = {0}). Moreover |Z/NZ| = N = pq = |Z/pZ × Z/qZ| so
the morphism is actually a bijection. Z/NZ ' Z/pZ × Z/qZ. Since multiplication goes coefficient-wise,
(Z/NZ)∗ ' (Z/pZ)∗ × (Z/qZ)∗. The only element of Z/pZ that does not have a multiplicative inverse is 0,

1

so |Z/pZ∗| = p− 1. Therefore |Z/NZ∗| = |Z/pZ∗| × |Z/qZ∗| = (p− 1)(q− 1). This means in particular that
m(p−1)(q−1) = 1 mod N . Thus,

(me)d mod N = med mod N

= m1+k((p−1)(q−1) mod N (since d = e−1 mod (p− 1)(q − 1))

= m(m(p−1)(q−1))k mod N

= m mod N

Example 1. p = 61, q = 53, N = 3233, e = 17, φ(N) = 3120, d = e−1 = 2753 mod φ(N)

Encryption of m = 65; c = 6517 mod 3233 = 2790.

Decryption of c: cd = 27902753 mod 3233 = 65 = m.

Remark. If one can factor N , then one can recover (p − 1)(q − 1), and thus compute d = e−1 mod (p −
1)(q − 1). It is unclear if it is a necessary condition.

2 Diffie-Hellman key exchange protocol

The typical scenario in encryption is to exchange a key (via a potentially insecure channel), and then t use
a stream cipher for encrypting/decrypting data. The Diffe-Hellman protocol was the first instance of public
key cryptography. The goal is for Alice and Bob to create a shared secret while being listened to by Eve.

Public paramaters: A group G and g ∈ G

Alice Bob

Computes a ∈ Z Computes b ∈ Z

sends ga −→

←− sends gb

computes (gb)a = gab computes (ga)b = gab

Eve

Remark. We rely on the hardness of finding a from ga and g. It is the discrete logarithm problem. It seems
to be a hard problem in certain groups such as (Z/pZ)∗ or the group of points of an elliptic curve.

Remark. The previous remark does not mean that the DH is as hard to break as solving the DLP. It is
sufficient, but we don’t know if it is necessary.

2

Example 2. G = (Z/101Z)∗ g = 2

Alice Bob

draws 43 draws 21

sends 243 mod 101 = 86 −→ ←− sends221 mod 101 = 89

Computes 8943 mod 101 = 8 Computes 8621 mod 101 = 8

Shared Secret : 8

3 RSA Signature

The signature schemes we have seen so far require both the signer and the verifier to share a key. If we use
the RSA encryption procedure backward, we can provide a signature scheme where the signer has a secret
key and everyone can verify using a public key.

Public key: N, e coprime to (p− 1)(q − 1)

Private key: d = e−1 mod (p− 1)(q − 1)

Signature: S(m,Sk) = md mod N = t

Verification: V (m,Pk, t) =‘true’ if te = m mod N , ‘false’ otherwise.

Example 3. p = 61, q = 53, N = 3233, φ(N) = 3120, e = 17, d = e−1 mod φ(N) = 2753

To sign m = 65 we do md = 652753 mod 3233 = 1393 = s.

To verify s, we do se = 139317 = 63.

4 Semantic security of RSA

This is an informal section to point out the issues in terms of semantic security that are raised by public
key encryption. Normally (in the one-time key scenario), the challenger draws the key h ← k and outputs
Enc(m,h). Here, the key Pk is public and can be used by everyone. So no one can prevent the adversary
to compute Enc(m0, Pk), Enc(m1, Pk) and to compare them to the challenge.

Necessary conditions: Enc(m1, Pk) produced by the challenger has to be different from Enc(m1, Pk) pro-

duced by the adversary. So a given message m has to have many (ex: 2128) different encryptions under the
public key. With RSA, one way to do that is to use some random padding. Alice wants to encrypt m. She
draws a random sequence n ∈ {0, 1}128 and constructs m′ = n | m. Then Enc(m,Pk) = m′e mod N . To
decrypt, Bob first decrypts m′ and then discards the first 128 bits of randomness.

3

