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4.1 Hash functions

A hash function is a function H :M→ T where typically |M|� |T |.

Definition. H is collision - resistant if there is no efficient algorithm A that can find m0,m1 ∈ M such
that H(m0) = H(m1) with non negligible probability.

We can use hash functions to derive MACs. The trivial construction consisting in defining:

• S(m, k) = H(k||m)

• V (m, k, t) = true if t = H(k||m)

is not secure because the Merkel-Darmgard construction to hash messages of arbitrary length easily allows
an adversary to compute H(k||m||something new) from H(k||m) without knowing k, which consistutes a
valid forgery in the MAC security game (even though this is not a collision for the hash function since we
don’t necessarily have that H(k||m||something new) = H(k||m). Instead, HMAC repeats this construction
twice:

• S(m, k) = H(k ⊕ opad||H(k ⊕ ipad||m)

• V (m, k, t) = true if t = H(k ⊕ opad||H(k ⊕ ipad||m),

where ipad and opad are fixed (public) bit strings.

4.2 Finding Collisions

To ensure the security of HMAC, we must use collision- resistant hash functions. Let H : M → T be a
hash function. There is a trivial way to find messages in M with the same tag in T (i.e. to find collitions).
It consists in drawing elements of M at random until we find one. It is not very smart, but the expected
number of trials before finding a collision is on average significantly less than N := |T |. In the worst case
however, one might have to draw N + 1 messages in M before obtaining a collision, but this statistically
never happens. This phenomenon is called the ”Birthday paradox”.

Theorem. Let 0 < x < 1. If we draw n ≥
√

2 ln
(

1
1−x

)√
N + 1 elements uniformly at random in M, the

probability of finding a collision is at least x.
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Proof. Let us calculate the probability of not finding a collision after trying n times.
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N
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N − 2

N
)....(
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N
)
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n−1∏
i=1
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N
)

≤
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= e
∑n−1

i=1
−i
N = e
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Therefore, the probability of finding a collision satisfies:

Pr(collision) = 1− Pr(no collision)

≥ 1− e
−(n−1)2

2N

To ensure that this probability be at least x it suffices that

e
−(n−1)2

2N ≤ 1− x ⇐⇒ −(n− 1)2

2N
≤ ln(1− x)

⇐⇒ (n− 1)2 ≥ 2 ln

(
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)
·N

⇐⇒ n ≥

√
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(
1

1− x

)
·
√
N + 1

This means that the size of T must account for the ”birthday attack”. If we want to make some that an
attack take at least 2128 operations, |T | must be at least 2256 (which is the case for SHA256).


