Lecture 4: Hash Functions and the Birthday Paradox

Lecturer: Jean-François Biasse
TA: William Youmans

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

4.1 Hash functions

A hash function is a function $H: \mathcal{M} \rightarrow \mathcal{T}$ where typically $|\mathcal{M}| \gg|\mathcal{T}|$.

Definition. H is collision - resistant if there is no efficient algorithm \mathcal{A} that can find $m_{0}, m_{1} \in \mathcal{M}$ such that $H\left(m_{0}\right)=H\left(m_{1}\right)$ with non negligible probability.

We can use hash functions to derive MACs. The trivial construction consisting in defining:

- $S(m, k)=H(k \| m)$
- $V(m, k, t)=$ true if $t=H(k \| m)$
is not secure because the Merkel-Darmgard construction to hash messages of arbitrary length easily allows an adversary to compute $H(k\|m\|$ something new) from $H(k \| m)$ without knowing k, which consistutes a valid forgery in the MAC security game (even though this is not a collision for the hash function since we don't necessarily have that $H(k\|m\|$ something new $)=H(k \| m)$. Instead, HMAC repeats this construction twice:
- $S(m, k)=H(k \oplus \operatorname{opad} \| H(k \oplus \operatorname{ipad} \| m)$
- $V(m, k, t)=$ true if $t=H(k \oplus \mathrm{opad} \| H(k \oplus \mathrm{ipad}| | m)$,
where ipad and opad are fixed (public) bit strings.

4.2 Finding Collisions

To ensure the security of HMAC, we must use collision- resistant hash functions. Let $H: \mathcal{M} \rightarrow \mathcal{T}$ be a hash function. There is a trivial way to find messages in \mathcal{M} with the same tag in \mathcal{T} (i.e. to find collitions). It consists in drawing elements of \mathcal{M} at random until we find one. It is not very smart, but the expected number of trials before finding a collision is on average significantly less than $N:=|\mathcal{T}|$. In the worst case however, one might have to draw $N+1$ messages in \mathcal{M} before obtaining a collision, but this statistically never happens. This phenomenon is called the "Birthday paradox".

Theorem. Let $0<x<1$. If we draw $n \geq \sqrt{2 \ln \left(\frac{1}{1-x}\right)} \sqrt{N}+1$ elements uniformly at random in \mathcal{M}, the probability of finding a collision is at least x.

Proof. Let us calculate the probability of not finding a collision after trying n times.

$$
\begin{aligned}
\operatorname{Pr}(\text { no collision }) & =\left(\frac{N-1}{N}\right)\left(\frac{N-2}{N}\right) \ldots\left(\frac{N-n+1}{N}\right) \\
& =\prod_{i=1}^{n-1}\left(1-\frac{i}{N}\right) \\
& \leq \prod_{i=1}^{n-1} e^{\frac{-i}{N}} \text { because } 1-y \leq e^{-y} \\
& =e^{\sum_{i=1}^{n-1} \frac{-i}{N}}=e^{\frac{-n(n-1)}{2 N}} \leq e^{\frac{-(n-1)^{2}}{2 N}}
\end{aligned}
$$

Therefore, the probability of finding a collision satisfies:

$$
\begin{aligned}
\operatorname{Pr}(\text { collision }) & =1-\operatorname{Pr}(\text { no collision }) \\
& \geq 1-e^{\frac{-(n-1)^{2}}{2 N}}
\end{aligned}
$$

To ensure that this probability be at least x it suffices that

$$
\begin{aligned}
e^{\frac{-(n-1)^{2}}{2 N}} \leq 1-x & \Longleftrightarrow \frac{-(n-1)^{2}}{2 N} \leq \ln (1-x) \\
& \Longleftrightarrow(n-1)^{2} \geq 2 \ln \left(\frac{1}{1-x}\right) \cdot N \\
& \Longleftrightarrow n \geq \sqrt{2 \ln \left(\frac{1}{1-x}\right)} \cdot \sqrt{N}+1
\end{aligned}
$$

This means that the size of \mathcal{T} must account for the "birthday attack". If we want to make some that an attack take at least 2^{128} operations, $|\mathcal{T}|$ must be at least 2^{256} (which is the case for SHA256).

